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Abstract

This report describes the Libra Byzantine Fault Tolerance (LibraBFT) algorithmic core and discusses
next steps in its production. The consensus protocol is responsible for forming agreement on ordering
and finalizing transactions among a configurable set of validators. LibraBFT maintains safety against
network asynchrony and even if at any particular configuration epoch, a threshold of the participants are
Byzantine.

LibraBFT is based on HotStuff, a recent protocol that leverages several decades of scientific advances
in Byzantine Fault Tolerance (BFT) and achieves the strong scalability and security properties required
by internet settings. Several novel features distinguish LibraBFT from HotStuff. LibraBFT incorporates
a novel round synchronization mechanism that provides bounded commit latency under synchrony. It
introduces a nil-block vote that allows proposals to commit despite having faulty leaders. It encapsulates
the correct behavior by participants in a “tcb”-able module, allowing it to run within a secure hardware
enclave that reduces the attack surface on participants.

LibraBFT can reconfigure itself, by embedding configuration-change commands in the sequence. A
new configuration epoch may change everything from the validator set to the protocol itself.

1 Introduction

The advent of the internet and mobile broadband has connected billions of people globally, providing access
to the world’s knowledge and information, high-fidelity communications, and a wide range of lower-cost,
more convenient services. These services are now accessible using $40 smartphones from almost anywhere in
the world [7]. Despite this connectivity, large swaths of the world’s population are left behind — 1.7 billion
adults globally remain outside of the financial system with no access to a traditional bank, even though one
billion have a mobile phone and nearly half a billion have internet access [13].

Blockchains have a number of unique properties that can potentially address some of the problems of
accessibility and trustworthiness. These include distributed governance, which ensures that no single entity
controls the network; open access, which allows anybody with an internet connection to participate; and
security through cryptography, which protects the integrity of funds. But existing blockchain systems have
yet to reach mainstream adoption.

We believe that it is possible to combine the best aspects of blockchain-based technological innovation
— distributed governance, open access, and security — with a robust compliance and regulatory framework.
As the next step toward this goal, we have designed the Libra Blockchain with the mission to enable a simple
global payment system and financial infrastructure that empowers billions of people.
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At the heart of this new blockchain is a consensus protocol called LibraBFT— the focus of this report
— by which blockchain transactions are ordered and finalized. To facilitate agreement among all validator
nodes on the ledger of transactions, the Libra Blockchain adopted the BFT approach by using the LibraBFT
consensus protocol.

Classical BFT. LibraBFT builds on a classical BFT approach pioneered by Lamport, Pease and Schostack
in [22]. Four decades of scientific advances in this arena enable high transaction throughput, low latency,
and a more energy-efficient approach to consensus than “proof of work” used in some other blockchains.

The main guarantee provided in this approach is resilience against to Byzantine failures – preventing
individual faults from contaminating the entire system. LibraBFT is designed to mask any deviation from
correct behavior in a third of the participants. These cover anything from a benign bit flipping in a node’s
storage to fully compromising a server by stealing its secret keys. Additionally, LibraBFT maintains safety
even during periods of unbounded communication delays or network disruptions. This reflects our belief
that consensus protocols whose safety rely on synchrony would be inherently both complex and vulnerable
to Denial-of-Service (DoS) attacks on the network.

A second important guarantee this approach provides for LibraBFT is a clearly described transaction
finality — when a participant sees confirmation of a transaction from a quorum of validators, they can be
sure that the transaction has completed.

Open and Competitive Network. The security of LibraBFT depends on the quality of validator node
operators. Validator nodes will be run by Members, each of which will be subject to robust due-diligence
procedures by the Association. This model is referred to as permissioned, an approach that promotes security
of the network based on the quality of participating Association Members. However, being permissioned
does not imply closed participation. LibraBFT is designed to facilitate open and dynamic participation
via reconfiguration. The Association will set open-call criteria to ensure that the selection processes for
expanding and renewing the membership are objective and transparent.

LibraBFT allows the Libra Blockchain to tolerate faults within the validator network but still requires
two-thirds of the validator nodes to function correctly in order for the network to be secure. Each organization
will run (or have run on its behalf) its validator node independently and is expected to isolate the validator
node from other systems the organization runs. This will make it extraordinarily difficult for an attacker
to compromise over a third of nodes required to launch a successful attack against the system. The Libra
network is diverse — the organizations that make up the pool of validator nodes are geographically diverse
and from a variety of industries and sectors. This will create a strong and distributed infrastructure, which
will increase resiliency and is designed to ensure that the validator nodes are not subject to common influence
or attack.

Cutting Edge. LibraBFT is a cutting edge technology that opens new possibilities in BFT scalability.
First, it is based on the HotStuff algorithm [28] whose key benefit is consensus-linearity. Briefly, this
means that under a wide range of settings, consensus decisions cost no more communication than to simply
spread the decision to everyone. It is distinguished from HotStuff in having a liveness and synchronization
mechanism that maintains linearity under faultless conditions, as well as providing concrete latency bounds.
Both are discussed in [26].

Second, the core logic of LibraBFT allows simple and robust implementation, paralleling that of public
blockchains based on Nakamoto consensus [25]. Notably, the protocol is organized around a single commu-
nication phase and allows a concise safety argument and a robust implementation. LibraBFT thus bridges
between the simplicity and modularity of public blockchains based on Nakamoto consensus, but builds trust
based on permissions.

LibraBFT has various features that distinguish it from HotStuff, some of which are left for future im-
plementation and are discussed only briefly in Section 8. The Libra protocol rotates the leader-role among
validators at every block in the chain in order to provide fairness and symmetry at no extra communica-
tion overhead. An enhancement to the voting rules allows commits to proceed despite faulty leaders, and
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planned enhancements will uphold safety guarantees against higher corruption thresholds than traditional
BFT approaches [23]. These features will be described in more detail in future documents.

2 Preliminaries

The goal of LibraBFT is to maintain a database of programmable resources with fault tolerance. At the core,
the system is designed around a state-machine-replication (SMR) engine where participants form agreement
on a sequence of transactions and apply them in sequence order deterministically to the replicated database.

LibraBFT is designed for a classical settings in which an initial system consists of a networked system
of n participants. The initial set of members is determined when the system is bootstrapped. LibraBFT
can reconfigure itself by embedding configuration-change commands in the sequence. A new configuration
epoch may change everything from the validator set to the protocol itself. This allows the system to churn
and allow open participation down the line.

To model failures, we define an adversary that controls the network delays and the behavior of up to
a threshold of the participants. In the standard distributed computing model, there are three adversarial
settings:

Synchronous. The synchronous model is the one in which the Byzantine consensus problem was originally
conceived [27, 22]. In the synchronous model, there exists some known finite time bound ∆, such that the
adversary can delay message delivery from an honest origin by at most ∆. The safety of the solution
introduced by Lamport et al. relied on synchrony, a dependency that practical systems wish to avoid both
due to complexity and because it exposes the system to DoS attacks on safety.

Asynchronous. In the Asynchronous model, the adversary can delay message delivery by any finite
amount of time even between honest parties. Note that, whereas there is no bound on the delay to message
delivery, messages sent between honest parties must eventually be delivered. The celebrated FLP result [19]
indicates that in asynchronous settings, any consensus solution that tolerates a single, crash failure must
have an infinite execution. In lieu of synchrony assumptions, randomized algorithms, pioneered by Ben-
Or [3] guarantee progress with high probability. A line of research gradually improved the scalability of such
algorithms, including [17, 24, 8, 1]. LibraBFT is not designed as a pure asynchronous solution, though in
the future, it may incorporate various components of randomized solutions to thwart adaptive attacks.

Partial synchrony. The adversarial model which is assumed for LibraBFT is a hybrid between syn-
chronous and asynchronous models called partial synchrony. It models practical settings in which the net-
work goes through transient periods of asynchrony (e.g., under attack) and maintains synchrony the rest of
the times.

A solution approach for partially synchronous settings introduced by Dwork et al. [15] separates safety (at
all times) from liveness (during periods of synchrony). DLS introduced a round-by-round paradigm where
each round is driven by a designated leader. Progress is guaranteed during periods of synchrony as soon
as an honest leader emerges, and until then, rounds are retired by timeouts. The DLS approach underlies
most practical BFT works to date as well as the most successful reliability solutions in the industry, for
example, the Google Chubbie lock service [5], Yahoo’s ZooKeeper [21], etcd [16], Google’s Spanner [12],
Apache Cassandra [9] and others.

Formally, the partial synchrony model assumes a ∆ transmission bound similar to synchronous networks,
and a special event called GST (Global Stabilization Time) such that:

• GST eventually happens after some unknown finite time.

• Every message sent at time t must be delivered by time max{t, GST}+ ∆.

An alternative definition for partial synchrony is to assume that there is some finite, but unknown, upper
bound on message delivery [15].
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Thresholds. There are several key impossibility and lower bounds that need to be taken into considera-
tion. Under the asynchronous (and partially synchronous) model, Fischer et al. [18] showed that Byzantine
consensus cannot be solved with more than one third faults, that is, at most f faults where n = 3f + 1. In
this settings, a quorum consists of n− f = 2f + 1 validators. Under synchrony, Dolev and Reischuk showed
in [14] an Ω(n2) worst case communication complexity.

3 Technical Background

LibraBFT is based on a line of replication protocols in the partial synchrony model with Byzantine Fault
Tolerance (BFT), e.g., [15, 10, 20, 4, 6, 28, 11]. It embraces cutting-edge techniques from these works to
support at scale a replicated database of programmable resources.

Round-by-round BFT solutions. The classical solutions for practical BFT replication share a common,
fundamental approach. They operate in a round by round manner. In each round, there is a fixed mapping
that designates a leader for the round (e.g., by taking the round modulo n, the number of participants).
The leader role is to populate the network with a unique proposal for the round.

The leader is successful if it populates the network with its proposal before honest validators give up on
the round and time out. In this case, honest validators participate in the protocol phases for the round.
Many classical practical BFT solutions operate in two phases per round. In the first phase, a quorum of
validators certifies a unique proposal, forming a quorum certificate, or a QC. In the second phase, a quorum
of votes on a certified proposal drives a commit decision. The leaders of future rounds always wait for a
quorum of validators to report about the highest QC they voted for. If a quorum of validators report that
they did not vote for a any QC in a round r, then this proves that no proposal was committed at round r.

HotStuff is a three-phase BFT replication protocol. In HotStuff, the first and second phases of a round
are similar to PBFT, but the result of the second phase is a certified certificate, or a QC-of-QC, rather
then a commit decision. A commit decision is reached upon getting a quorum of votes on the QC-of-QC (a
QC-of-QC-of-QC).

LibraBFT embraces the three-phase HotStuff paradigm which brings two benefits, optimistic responsive-
ness and linearity, that are not simultaneously achieved in two-phase solutions. Jointly, these two properties
provide consensus linearity without sacrificing asynchrony: An honest leader can prove the safety of a pro-
posal by referencing a single QC (from the highest round). HotStuff was adopted in several subsequent
works, including PaLa [11], BFTree [2], and others.

Regardless of the number of phases, a round might not succeed in making progress due to a faulty leader
or because validators enter the rounds at different times. The case of unsuccessful rounds is discussed below.

Chaining. LibraBFT borrows a chaining paradigm that has become popular in blockchain BFT protocols
and popularized by HotStuff. In the chaining approach, the three phases for commitment are spread across
rounds. More specifically, every phase is carried in a round and contains a new proposal. The leader of round
k drives only a single phase of certification of its proposal. In the next round, k + 1, a leader again drives
a single phase of certification. This phase has multiple purposes. The k + 1 sends its own k + 1 proposal.
However, it also piggybacks the QC for the k proposal. In this way, certifying at round k + 1 generates a
QC for k + 1, and a QC-of-QC for k. In the third round, k + 2, the k proposal can become committed, the
(k + 1) proposal can obtain a QC-of-QC, and the (k + 2) can obtain a QC.

Rounds without certificates. Validators may give up on a round by timeout. This may cause transition
to the next round without obtaining a QC. The leader of the next round faces a choice as to how to extend
the current block-tree it knows. LibraBFT deviates from HotStuff in that the leader always extend the
highest certified leaf with a direct child. The advantage is that the tree of blocks has a uniform structure,
every node has a QC for its direct parent.
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Figure 1: LibraBFT phases are spread across rounds.

Commit-rule. As a consequence of the LibraBFT chaining approach, the block tree in LibraBFT may
contain “chains” that have gaps in round numbers. Round numbers are explicitly included in blocks, and the
resulting commit logic is simple: It requires a 3-chain with contiguous round numbers whose last descendent
has been certified.

Round synchronization. In a distributed system, at any moment in time, validators may be in a different
state and receive different messages. The issue of bringing validators to enter rounds in approximately the
same time is somewhat overlooked in the literature. PBFT gave a theoretical “eventuality” method for round
synchronization by doubling the duration of rounds until progress is observed. HotStuff encapsulated the
role of advancing rounds in a functionality named PaceMaker, but left its implementation unspecified. In
LibraBFT, when a validator gives up on a certain round (say r), it broadcasts a timeout message carrying a
certificate for entering the round. This brings all honest validators to r within the transmission delay bound
∆. When timeout messages are collected from a quorum of validator, they form a timeout certificate (or a
TC ).

4 LibraBFT Overview

At a high level, the goal of the LibraBFT protocol is to commit blocks in sequence.
The protocol operates in a pipeline of rounds. In each round, a leader proposes a new block. Validators

send their votes to the leader of the next round. When a quorum of votes is collected, the leader of the
next round forms a quorum certificate (QC) and embeds it in the next proposal. This process continues until
three uninterrupted leaders/rounds complete and the tail of a chain has three blocks with consecutive round
numbers. Then, the head of the “3-chain” consisting of three consecutive rounds that has formed becomes
committed. The entire branch ending with the newly committed block extends the sequence of commits.

Figure 2 depicts proposals (blocks), QC’s, and a commit. The figure displays a tree of blocks, including a
fork, rather than a simple chain. Forking can happen for various reasons such as a malicious leader, message
losses, and others. For example, the figure shows a Byzantine leader that forked the chain at block k, causing
an uncommitted chain to be abandoned. The k block uses the same QC for its parent as the left fork, hence
validators vote it. In the depicted scenario, the k block becomes committed, and the left branch is discarded.

LibraBFT guarantees that only one fork becomes committed through a simple voting rule that consists
of two ingredients: First, validators vote in strictly increasing rounds. Second, whenever validators receive a
block, they maintain a preferred round, defined as the highest known grandparent round. The rule is that
validators vote for a block if its parent round is as least the preferred round. In Figure 2, validators that
contributed to the formation of a QC for round k + 2 remember k as their preferred round.
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Figure 2: Proposals (blocks) pending in the Block-tree before and after a commit

Consider the scenario depicted in the Figure 3, which is intentionally quite tricky. In the scenario, QCs are
formed in rounds k+1 and k+2. 2f+1 validators vote for k+2 and remember k as their preferred round.
Then at round k + 3 the leader experiences a temporary disruption. Round k + 3 times out and another
leader, say k + 4 forks the chain at k. This fork obtains 2f + 1 votes because there is no violation of the
preferred round rule, and it is followed by k + 5 and k + 6.

In some future round, the leader of round k+ 3 becomes leader again and makes use of the QC for k+ 2,
thus committing the round-k block. Later, another leader may make use of the QC for k + 6 and hence
commit k+ 4. Again, note that there is no consistency violation, the left-hand fork caused k to commit, and
later it is dismissed.

Figure 3: Third block of a three-chain does not necessarily commit

4.1 The Protocol in a Nutshell

The logical round-by-round protocol structure above is materialized in the LibraBFT codebase via a handful
of event handlers executed by each validator. Handlers are triggered by either messages or timers.
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More specifically, a validator main task is a loop start event processing handling three types of mes-
sages, a proposal (block), a vote, and a timeout. It is also triggered when a timer expires.

For brevity, the description henceforth assumes messages have already been filtered for format and validity
of cryptographic values, and that any information indirectly referenced by messages (e.g., a QC for a block)
is filled by a lower-level communication substrate.

Handling proposals, process proposal msg:

To bootstrap the execution, initially, all validators bootstrap the chain with a fixed genesis block and
enter round 1. After the first round, validators enter rounds upon receiving a QC or TC for the previous
round; vote and timeout collecting is described below.

Entering a new round is handled by advance round. Upon entering a new round, the leader for the
round extends the chain of blocks with a new proposal and broadcasts it.

When a validator receives a leader proposal for the current round k, it invokes process proposal msg

to vote for the proposal according to the voting rules.
First, it processes the QC or TC for round k−1 the proposal carries, see details below (process certificates).

Subsequently, a validator invokes make vote to determine if it can vote for the proposal according to two
voting conditions:

1. A validator must vote in monotonically increasing rounds. Each validator maintains and persists a vari-
able last vote round, and votes in round k if it is higher than last vote round. After it sends a vote,
the validator last voting round is advanced to disallow voting again in round k (increase last vote round).

2. When it votes on a block, a validator maintains and persists a variable preferred round, and votes
in round k only if the QC inside the k proposal is at least preferred round.

Last, a validator prepares a speculatively committed state in case block k causes its grandparent to become
committed. That is, if block k forms a 3-chain whose rounds numbers are consecutive to the grandparent,
then if a QC on k is collected the grandparent will be committed. Therefore, the validator includes in a vote
a speculative commitable state commit state id of the grandparent.

Votes are sent to the leader of the next round (k+ 1), along with the highest certificate (high qc) known
to the validator.

Handling votes, process vote msg:

When a validator receives a vote message for round k, it invokes process vote msg to handle it. First, it
processes the high qc the vote carries, see details below (process certificates). Second, the Pacemaker
aggregates the votes until it collects enough votes to form a QC. The Pacemaker authorizes a transition
to the new via advance round, causing the new leader of the new round to generate a proposed block
(generate proposal) and to broadcast it.

Handling timer expiration, local timeout round:

If a validator waits for the leader proposal for round k for a timeout period and it doesn’t arrive, it
broadcasts a timeout message carrying its highest certigicate high qc.

Upon a timer expiration for round k, a validator broadcasts its timeout message to all the participants.
A timeout message carries the highest certificate of the validator high qc. Additionally, if the validator
entered round k due to a TC, it includes the TC for round k−1 in the timeout message. Similarly to voting,
the last voting round is advanced via increase last vote round to disallow further voting in round k after
expiring it.
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Handling timeout message, remote timeout:

When a validator receives a timeout message for round k, again it first processes the QC it carries via
process certificates, as described below. Second, the leader for round k + 1 collects timeout messages
for the preceding round until it forms a TC. Once a leader forms a TC, the leader generates a proposed
block via generate proposal and broadcasts it.

Processing certificates, process certificates:

Upon receiving any message, a validator processes the certificates it carries via process certificates:

Sync round: If a validator is currently at the certificate round or lower, it advances to the next round via
advance round.

Commit: If a certificate qc contains a non-empty commitable grandparent state commit state id, then the
new committed state is executed and persisted to the ledger store.

Preferred round: The round of the parent of the certificate becomes “locked” by setting preferred round

to it, provided that it is higher than the current preferred round.

5 LibraBFT Full Protocol

We proceed with a detailed description of the LibraBFT protocol, elaborating the data-structures and
modules in the implementation. The implementation is broken into the following modules: A Ledger module
stores a local, forkable speculative ledger state. A Block-tree module creates proposal blocks and votes.
It keeps track of a tree of blocks pending commitment with votes and QC’s on them. A Safety module
implements the core consensus safety rules. A Pacemaker module is the liveness keeper that advances rounds.
A ProposerElection module maps rounds to leaders. Finally, a Main module is the glue that dispatches
messages and timer event handlers.

Ledger

Ultimately, the goal of the Libra blockchain is to maintain a database of programmable resources, which
the consensus LibraBFT core replicates. The database is represented by an abstract ledger state. Most of
the implementation details of the persistent ledger-store and of the execution VM that applies transactions
that mutate ledger state are intentionally left opaque and generic from the point of view of LibraBFT; in
particular, the specifics of Move transaction execution are beyond the scope of this manuscript.

The Ledger module local to each LibraBFT validator serves as a gateway to the auxiliary ledger-store.
It maintains a local pending (potentially branching) speculative ledger state that extends the last committed
state. The speculation tree is kept local at the validator in-memory until one branch becomes committed. It
provides a mapping from the block-tree (see below), which is pending commitment, to the speculative ledger
state that pends commitment.

The Ledger.speculate(prev block id, block id, commands) API speculatively executes a block of trans-
actions over the previous block state and returns a new ledger state id. Speculative execution potentially
branches the ledger state into multiple (conflicting) forks that form a tree of speculative states. Eventually,
one branch becomes committed by the consensus engine. The Ledger.commit() API exports to the persistent
ledger store a committed branch. Locally, it discards speculated branches that fork from ancestors of the
committed state.

It is important to emphasize that Ledger supports speculative execution in order to enable proper handling
of potential non-determinism in execution. If we would build a system that is merely ordering the commands
in order to pass them to the execution layer, we would not need to maintain a tree of speculative states
because the VM would execute the agreed commands only. However, such a system would not be able to
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tolerate any non-determinism (e.g., due to a hardware bug): the validators would diverge without LibraBFT
being aware of that. Hence,LibraBFT goes beyond ordering the commands: it makes sure that the votes
certify both the commands and their execution results. There should be at least 2f + 1 honest validators
that arrive at the same state in order for the command to gather a QC.

Ledger
new state id← speculate(prev block id, block id, cmds) // apply cmds speculatively

state id← get state(block id) // find the pending state for the given block id or nil if not

present

commit(block id) // commit the pending prefix of the given block id and prune other branches

Block-tree Module

The Block-tree module consists of two core data-types which the validator protocols is built around, blocks
and votes. A third data-type derived from votes is a Quorum Certificate (QC), which consists of a set of
votes on a block. An additional data-type concerned solely with timeouts and advancement of rounds is
described below in the Pacemaker module. The Block-tree module keeps track of a tree of all blocks pending
commitment and the votes they receive.

Figure 4: A block in Block-tree

Blocks. The core data structure used by the consensus protocol for forming agreement on ledger transac-
tions is a Block. Each block contains as payload a set of proposed Ledger transactions, as well as additional
information used for forming consensus decisions.

Every block b (except for a known genesis block P0) is chained to a parent via b.parent qc, a Quorum
Certificate (QC) that consists of a quorum of votes for a parent block. In this way, the blocks pending
commitment form a tree of proposed blocks rooted at P0.

Block-tree
Block

round ; // the round that generated this proposal

payload ; // proposed transaction(s)

parent qc ; // qc for parent block

id ; // unique digest of round, payload and parent qc.id

Votes and Certificates. Vote information VoteInfo for a block b must include both the block id id and
an execution state id exec state id in order to guarantee a deterministic execution outcome. Additionally
and (redundantly), VoteInfo holds the id’s and rounds of b’s parent. This redundant information is kept
for convenience, allowing to infer commitment from a single block without fetching its ancestors. This also
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allows to execute the core safety logic of LibraBFT within a TCB autonomously and determine commitment
decisions without IO (see 8).

In addition, a vote message includes LedgerCommitInfo, a speculated committed ledger state, identified
by commit state id. When a QC for a block results in a commit of its grandparent, the quorum of votes
on the block also serve to certify the new committed ledger state.

LedgerCommitInfo serves two purposes. First, it includes the commit state id, which can be given to
the clients as a proof of history (in practice commit state id can be a hash of a root of Merkle tree that covers
the history of the ledger). Clients should not be aware of the specifics of consensus protocol for as long as
they are able to verify that the given ledger state is signed by 2f+1 participants. Second, LedgerCommitInfo
includes the hash of VoteInfo. This hash is opaque to the clients and is used by Consensus participants.
A validator that signs its vote message is thus authenticating both the potential LedgerInfo (to be stored
by the ledger as a proof of commit) and the actual vote decision (to be used for running the Consensus
protocol).

Consider, for example, a proposal b in round k with parent b′ in round k − 1 and grandparent b′′ in
round k − 2. In case a validator decides to vote for b, it signs a LedgerCommitInfo that includes both the
potential commit of b′′ as well as the hash of VoteInfo on b.

Block-tree (cont.)
VoteInfo

id, round ; // id and round of block

parent id, parent round; // id and round of parent

exec state id ; // speculated execution state

// speculated new committed state to vote directly on

LedgerCommitInfo
commit state id ; // nil if no commit happens when this vote is aggregated to QC

vote info hash ; // hash of VoteMsg.vote info

VoteMsg
vote info ; // a VoteInfo record

ledger commit info ; // Speculated ledger info

sender← u, signature← signu(ledger commit info);

// QC is a VoteMsg with multiple signatures

QC

vote info

ledger commit info

signatures; // quorum of signatures

PendingBlkTree and PendingVotes The Block-tree module tracks blocks pending commitment in PendingBlkTree

and votes in PendingVotes. The PendingBlkTree builds a speculative tree of blocks similarly to the Ledger
building a speculative tree of states. In fact there is a 1:1 mapping between a block in PendingBlkTree and
a block in Ledger. When a new block is added to the PendingBlkTree it is also automatically added to the
Ledger.

Votes are aggregated in PendingVotes based on the hash of the ledger commit info. Once there are
2f + 1 votes, they form a QC. As mentioned above, ledger commit info includes information both about
a potential commit and vote info, hence it is important to make sure that all vote messages refer to the
same vote and commit (it would not be enough to aggregate votes just by the id of the proposal).

The algorithm maintains the highest known certified block in high qc, updating it when a new QC is
formed or received as part of the proposal. New proposals extend the highest certified block known locally
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to the validator.

Block-tree (cont.)
PendingBlkTree ; // tree of blocks pending commitment

PendingVotes ; // collected votes per block indexed by their LedgerInfo hash

high qc ; // highest known QC

Procedure execute and insert(b)
execute state id← Ledger.speculate(P.parent qc.block id, P.id, P.payload)
PendingBlkTree.add(b)
high qc← maxround{b.parent qc, high qc}

Procedure process vote(v)
vote idx← hash(v.ledger commit info)
V[vote idx]← V[vote idx] ∪ v.signature
if |V[vote idx]| = 2f + 1 then

qc←QC〈
vote info← v.vote info,
state id← v.state id,
votes← V[vote idx]
〉

Pacemaker.advance round(qc) high qc← maxround{qc, high qc}

Function generate proposal(cmds)
return 〈

b.round← current round,
b.payload← cmds,
b.parent qc← high qc,
b.id← hash(b.round || b.payload || parent qc.id)

〉

Function process commit(id)
Ledger.commit(id)
PendingBlkTree.prune(id) // id becomes the new root of pending

Safety Module

In LibraBFT, a block becomes committed when it becomes the head of a contiguous 3-chain (three descen-
dants with contiguous rounds). When a validator casts a vote on a block, it invokes Safety.commit rule to
check whether the vote may contribute to a new commit. A new commit will be enables if the qc inside
the block immediately precedes the vote’s round, and if the parent of the qc immediately precedes the qc
round. In this case, the block referred to by qc.parent id will become committed. Figure 2 demonstrates
the application of the commit rule over a block-tree.

The consensus state per validator that is critical for the safety of the protocol consists of the two following
counters: (i) last vote round keeps the last voted round, and (ii) preferred round keeps the highest parent
of a certified block (highest 2-chain head). Consensus state must be persisted before any vote or timeout
message is sent to the peers.

Upon receiving a proposal (a block) b∗, a validator votes for b∗ only if b∗.round is higher than its
last voting round, and b∗.parent round is at least as high as preferred round. Briefly, the first clause
guarantees that at most one QC may be formed per round number. The second clause is slightly more
tricky. When a validator votes on b∗, there are already 2f + 1 validators “locked” on the three-chain (great
grandparent) round of b∗ as their preferred round. If indeed a QC on b∗ is formed, then commitment of
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the great grandparent is safe. For a precise proof of safety, see Section 7.
The Safety module’s logic is captured below.

Safety
last vote round ; // initially 0

preferred round; // initially 0

Procedure increase last vote round(target)
// commit not to vote in rounds lower than target

if last vote round < target then last vote round← target

Procedure update preferred round(qc)
preferred round← max{qc.parent round, preferred round}

Function make vote(block id, block round, parent qc)
// This function exercises both the voting and the commit rules

if (block round ≤ last vote round) ∨ (parent qc.round < preferred round) then
return nil

increase last vote round(block round)
save consensus state()
// VoteInfo carries the potential QC info with ids and rounds of the whole three-chain

vote info←VoteInfo〈
(id, round)← (block id, block round),
(parent id, parent round)← parent qc.(id, round)
(grandparent id, grandparent round)← parent qc.(parent id, parent round)
exec state id← Ledger.get state(block id)
〉

potential commit id← commit rule(parent qc, block round) ; // might be nil

ledger commit info←LedgerCommitInfo 〈
commit state id← Ledger.get state(potential commit id),
vote info hash← hash(vote info)
〉

return VoteMsg〈vote info, ledger commit info〉

Function commit rule(qc, vote round)
// find the committed id in case a qc is formed in the vote round

if (qc.parent round + 1 == qc.round) ∧ (qc.round + 1 == vote round) then
return qc.parent id

else
return nil

Note that the safety module does not require external dependencies and generates votes coupled with the
potential commit information purely based on the rounds carried by the proposal and its QC. This is helpful
for verifying safety, as well as allowing to separate the Safety module to execute within a TCB (see 8).

Pacemaker Module

The advancement of rounds is governed by a module called Pacemaker. The Pacemaker keeps track of votes
and of time.

In a “happy path”, the Pacemaker module at each validator observes progress, a leader proposal for the
current round, and advances to the next round.

In a “recovery path”, the Pacemaker observes lack of progress in a round.
Upon a local round timeout, the Pacemaker broadcasts a TimeoutMsg notification.
Whenever the Pacemaker receives a certificate, either a quorum certificate (QC) or a timeout certificate
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(TC), it instructs the validator to advance to the certificate’s round (Main.process new round event). It
additionally instructs the validator to forward the QC/TC to the leader of round. This guarantees that upon
entering a round with an honest leader, all validators will synchronize to within two network transmission
delays.

Pacemaker
current round; // initially zero

T[] ; // timeouts per round

TimeoutMsg
round ; highqc← PendingBlkTree.get high qc() ; // sender’s highest qc added automatically

sender← u, signature← signu(round); // sender and signature added automatically

Procedure local timeout round

if u 6∈ T[current round] then
Safety.increase last vote round(current round) // stop voting for current round

save consensus state()
broadcast TimeoutMsg(current round)
T[current round]← T[current round] ∪ {u}

Procedure process remote timeout(tmo)
T[tmo.round]← T[tmo.round] ∪ {tmo.sender}
// A timeout certificate (TC)

if |T[tmo.round]| == 2f + 1 then advance round(T[tmo.round])

Procedure advance round(qc)
r ← qc.round
if r < current round then return
stop local timer for round r

current round← r + 1

if u 6= ProposerElection.get leader(current round) then
send qc to ProposerElection.get leader(current round)

start local timer for round current round for duration get round timer(current round)
Main.process new round event()

Function get round timer(r)
return round timer formula // for example, use 4 × ∆ or α+ βcommit gap(r) if ∆ is unknown.

ProposerElection Module

ProposerElection emits a validator for a given round in a deterministic fashion, s.t. different honest par-
ticipants would all implicitly agree on the chosen leader per round. The leader is determined by the hash
of the given round: as a result different combinations of successive leaders occur in the system with equal
probability.

ProposerElection
validators; // The list of current validators

Function get leader(round)
return validators[ hash(round) mod |validators| ]
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Main Module

The main body of LibraBFT is an event-handling switch that runs an endless loop, and invokes appropriate
handlers to process messages and events. The following (handful) of high-level events are handled: a propose
message, a vote message, a remote timeout message, a local timeout, and a new round (as leader).

Main
loop: wait for next event M ; Main.start event processing(M)

Procedure start event processing(M)
if M is a proposal message then process proposal msg(M)
if M is a vote message then process vote msg(M)
if M is a timeout message then Pacemaker.process remote timeout(M)
if M is a local timeout then Pacemaker.local timeout round ()

Procedure process certificates(qc)
Pacemaker.advance round(qc) // Might update current round

Safety.update preferred round(qc)
if qc.ledger commit info.commit state id 6= nil then

Block-tree.process commit(qc.grandparent id)

Procedure process proposal msg(P)
process certificates(P.parent qc) // Might update current round of pacemaker

current round← Pacemaker.current round

if P.round 6= current round then
return

if P.sender 6= ProposerElection.get leader(current round) then
return

Block-Tree.execute and insert(P) // Adds a new speculative state to the Ledger

vote msg← Safety.make vote(P.id, P.round, P.parent qc)
if vote msg 6= nil then

vote aggregator← ProposerElection.get leader(current round + 1)
send vote msg to vote aggregator

Procedure process vote msg(M)
Block-Tree.process vote(M) // If a new QC is formed, Pacemaker will start a new round

Procedure process new round event()
if u 6= ProposerElection.get leader(Pacemaker.current round()) then return
b← Block-Tree.generate proposal( new commands from mempool )
broadcast signu(b)

Persisted Validator Information

In addition to the ledger state, which is abstracted away within the Ledger module, a validator needs to per-
sist information about its voting history in order to maintain safety. The size of the state that needs to be per-
sisted for safety is quite small, and consists of merely a few elements, persisted via save consensus state()
as follows:

Procedure save consensus state()
persist last vote round

persist prefered round

persist PendingBlkTree // make voted information recoverable for liveness, not needed for safety
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Omitted, gory details

We encapsulate several tasks related to wire-protocol and defer it to a transport substrate that will be
described elsewhere. The transport takes care of formatting messages and serializing them for transmission
over the wire, for reliably delivering messages, and for retrieving any data referenced by delivered messages,
in particular, block ancestors. In particular, when a message is handled in the pseudo code, we assume that
its format and signature has been validated, and that the receivers has synced up with all ancestors and any
other data referenced by meta-information in the message.

6 Liveness Proof and Latency Bounds

6.1 Optimistic Responsiveness

We first prove optimistic responsiveness, namely that when an honest leader gets an opportunity to make
progress – all honest validators wait for its proposal – they will accept and vote for it. In order to satisfy
optimistic responsiveness, we need to demonstrate that at any round, if the leader is honest and a validator
receives the leader proposal by the leader without the round timer expiring, then it accepts (votes) for the
proposal.

Property 1. If an honest validator has a preferred round = r0 when it enters round r, then there exist
f + 1 honest validators, which had highest 1-chains at round rhqc >= r0 at round r′ < r.

Indeed, preferred round = r0 implies a 2-chain: there are 2f + 1 validators that voted for a block
carrying the QC with round r0. This voting happened in some round r′ < r, hence following our BFT
assumptions there exist f + 1 honest validators with highest 1-chain equal or greater than r0 before they
enter round r.

In order to complete the optimistic responsiveness argument, consider an honest validator starting round
r with preferred round r0: by Property 1 some f+1 honest validators had 1-chains at least r0 before entering
r. Since the leader gathered the highest 1-chains from 2f + 1 validators before entering r, there should be
at least 1 honest validator that sent a 1-chain with round at least r0 to the leader. Thus, a new proposal by
the honest leader at round r carries a QC with round at least r0, hence it passes the preferred round rule
and should be accepted by this honest validators.

6.2 Liveness under Synchrony

We first analyze liveness/latency under synchrony. Assume a known bound ∆ on messages transmission
delays among honest validators, and let Pacemaker.set round timeout() return a fixed value 4∆ for all
rounds.

Round synchronization. Under synchrony, the Pacemaker maintains round synchronization defined as
follows:

Property 2. If round r has an honest leader, then all honest validators enter round r within a period of
2∆ from each other.

Indeed, an honest validator enters round r only upon receiving a QC containing 2f + 1 round-(r − 1)
votes or a TC containing 2f + 1 round-(r − 1) timeouts. In the former case, the certificate is sent by the r
leader, hence it arrives within ∆ to all honest validators. In the latter, the first honest validator to receive
a TC for round (r− 1) forwards it to the (honest) leader, hence all remaining honest validators enter round
r within 2∆ time.

A corollary of Property 2 is that all honest validators overlap in at least 2∆ period at round r.
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By the corollary to Property 2, an honest leader and all honest validators overlap in at least 2∆ period in
the leader round. Due to the optimistic responsiveness property, the honest validators will accept the leader
proposal and vote for it.

We call a round three-chainer if it has an honest leader and three subsequent leaders are also honest.
Applying the above two properties four times is succession, we get that the three-chainer proposal becomes
committed.

We proceed to provide a concrete latency bound under synchrony. The latency to arrive at a new commit
is impacted by two factor, the time to bring all honest validators to execute the same round after bad leaders,
multiplied by the number of rounds to get a succession of four honest leaders.

Property 3. If rounds r, r+1, r+2, r+3 have honest leaders, where r is the highest round any single honest
validator has entered, then r becomes committed within 4× 6∆ time.

By Property 2, all honest validators enter round r within ∆ period from each other. Furthermore, no
honest validator round timer expires on any of the four rounds r, r+ 1, r+ 2, r+ 3, hence the round proposal
commits. Since each round takes 3∆, accounting for the additional 2∆ skew, the succession takes at most
4× (4∆ + 2∆).

It is worth noting that the TC broadcast by honest validators is crucial for this latency bound. Without
the broadcast, f + 1 validators might advance jointly with f bad validator one round ahead of the remaining
f honest, and the f honest never catch up.

To arrive at an honest succession of four leaders may take an expected 81 rounds under f failures.
Hence, in total, under worst case failure conditions, the expected latency is (81 × 3∆) + (4 × 6∆).

Furthermore, suppose that δ is the actual network latency. We already showed that all honest validators
enter the highest round any of them is it within ∆. Once they reach an honest 3-chain, it is easy to show
(simply replace ∆ above with δ) that is takes only 8δ for the 3-chain to become committed.

Note that the above latency bound is incurred in expectation on when the maximal number of faults
is reached. Below, we elaborate on an enhancement called “nil blocks” that facilitates faster commits by
individual honest leaders 8.

Liveness and Latency under Partial Synchrony.

What happens when ∆ is not known (partial synchrony)? Pretty much the same except that validators need
to “guess” ∆ by gradually increasing their round duration.

Validators can choose round duration as β+αcommit gap(r), where commit gap(r) is the number of rounds
preceding r not known to commit minus 2 (since commits are always delayed two rounds). At any moment
in time, different validators may have different views of the last commit, hence their round durations may
vary. Eventually, all of them will have round durations at least ∆ but the round timeout value is unbounded.
That is, all honest validators will guarantee to enter new rounds within 2∆ delay, but the time they spend
in a round until a timeout is unbounded. Therefore, the latency bound in a partial synchrony settings is the
following property:

Again, once validators synchronize at a 3-chain round, they will progress to commit at network speed.

7 Safety Proof

In this section we start by defining some notation that we will use:

• Bi ←−∗ Bj means that the block Bj extends the block Bi.

• Bi ←− QCi ←− Bi+1 means that the block Bi is certified by the quorum certificate QCi which is
contained in the block Bi+1.

• round(Bi) reads as ”the round number of block Bi”.
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• previous round(Bi) := round(Bi−1) for Bi−1 ←− QCi−1 ←− Bi.

• preferred round(N,Bi) reads as ”the preferred round of validator N after voting for block Bi”.

Let’s now recapitulate the BFT assumption which we need to prove the safety of our protocol.

Definition 1 (BFT Assumption). For all f dishonest validators, there exist 2f + 1 honest validators.

The following classical lemma can be derived from the assumption.

Lemma 1. Under BFT assumption, for all blocks B,B′ and quorum certificates QC,QC ′, if all the following
properties are true

• B ←− QC

• B′ ←− QC ′

• round(B) = round(B′)

then we have that B = B′. In other words there can only be one certified block per round.

Proof:

1. By definition, quorum certificates have at least 2f + 1 votes. For a quorum certificate C let’s
define honest(C) as the set of honest validators that have participated in QC. Due to the BFT
assumption, For all quorum certificate C we have

honest(C) ≥ f + 1

2. Following statement 1, we have

|honest(QC) ∩ honest(QC ′)| ≥ (f + 1) + (f + 1)− (2f + 1) ≥ 1

3. Following statement 2, There exists an honest node hn such that hn ∈ QC and hn ∈ QC ′.
Since round(B) = round(B′), by voting rule 1 hn could have only voted for one block in this
round. This implies that B = B′.

We can now define what safety means formally.

Definition 2 (Safety). LibraBFT is safe if ∀ B, B̃ ∈ Blocks, such that B is committed at round k and B̃

is committed at round k̃ > k, then B ←−∗ B̃.

Let’s now state and prove the safety theorem.

Theorem 2. LibraBFT is safe under BFT assumption.

Proof:

1. Two blocks B0, B
′
0 are committed if there exist two chains:

• B0 ←− QCB0
←− B1 ←− QCB1

←− B2 ←− QCB2

• B̃0 ←− QCB̃0
←− B̃1 ←− QCB̃1

←− B̃2 ←− QCB̃2

with both the chains having contiguous rounds, meaning that:

• round(B2) = round(B1) + 1 = round(B0) + 2

• round(B̃2) = round(B̃1) + 1 = round(B̃0) + 2
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We can assume round(B̃0) ≥ round(B0) without loss of generality.

2. It suffices to prove that ∀ B0 and B̃0 such that round(B̃0) ≥ round(B0) and both blocks

are committed, we have B0 ←−∗ B̃0.

3. Let B a certified block, using lemma 1 the following statements are true:

• round(B) = round(B0) =⇒ B = B0

• round(B) = round(B1) =⇒ B = B1

• round(B) = round(B2) =⇒ B = B2

4. Following statement 2, we have either of the initial states:

• round(B0) ≤ round(B̃0) ≤ round(B2), and by statement 3 B̃0 is either B0, B1, or B2 and

B0 ←−∗ B̃0,

• or round(B̃0) > round(B2).

5. Let block B̃i such that round(B̃i) > round(B2) and let block B̃i−1 = previous round(B̃i),
then either

• round(B0) ≤ round(B̃i−1) ≤ round(B2), and by statement 3 B̃i−1 is either B0, B1, or B2

and B0 ←−∗ B̃i−1,

• or round(B̃i−1) > round(B2).

Proof:

5.1. It suffices to prove that if round(B̃i) > round(B2), then round(B̃i−1) ≥ round(B0).

5.2. Due to quorum certificates having at least 2f + 1 votes, the intersection of any
two quorum certificates has at least one honest validator.

5.3. By statement 5.2, There exists an honest validator hv such that hv ∈ QCB2
and

hv ∈ QC
B̃i

.

5.4. By the voting rule 2, after hv observed B2, preferred round(hv,B2) ≥ round(B0).

5.5. Since round(B̃i) > round(B2), by the voting rule 1 hv could only vote for B̃i if

previous round(B̃i) ≥ preferred round(hv,B2)

⇔ round(B̃i−1) ≥ round(B0).

6. ∀ blocks Bi, Bi−1 such that Bi−1 = previous round(Bi), then round(Bi−1) < round(Bi).

7. By induction using statements 4, 5 and 6, B0 ←−∗ B̃0.

8 Next Steps

In this section, we briefly touch on some roadmap topics that LibraBFT will include in the future. More
details about each topic will appear in coming documents.
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Nil proposals. If a QC for a round (say k) cannot be formed, a leader of a higher round must present a
timeout certificate (TC) from a quorum of validators in order to move into the round. If the TC contains
timeout messages from validators, such that each of this quorum of validators did not vote in round k, then
it can serve as a QC for an implicit “nil proposal”.

The benefit of this enhancements is that expired rounds contribute to fast(er) commitment, as depicted
in Figure 5. Note that nil proposals can be chained, just like normal blocks.

Figure 5: Nil blocks can contribute to fast(er) commitment.

Epoch changes. LibraBFT can reconfigure itself by embedding configuration-change commands in the
sequence. Blocks on the branch extending a configuration-change command are proposed and voted on only
for the purpose of commiting the reconfiguration, but they must not contain normal transaction payload (nor
will transactions be they contain get executed). This is essentially a “stop the world and restart” operation.

A new configuration epoch may change every part of the algorithm, from the validator set to the protocol
itself. A new epoch starts with an epoch-genesis block proposed and committed by the validators of the new
epoch.

Proposer election strategies. There are several ways to enhance the proposer election mechanism in
order to avoid performance hick-ups when a bad leader is elected, or worse, when a succession of bad leaders
is elected.

An alternate leader strategy elects an ordered pair of leaders per round. The lower leader delays a certain
duration in order to yield to the higher leader. This approach has the benefit of unlocking rounds with a
crashed leader quickly, but the risk of creating contention among the leaders. The success of the approach
largely hinges on the ability to stagger leaders effectively.

A different approach optimizes for a stable leader, and provides fairness and load balancing via rotating
input generators. In each round, there are two distinct roles, a leader and an input generators. The leader
is kept stable so long as progress and good performance are observed. The input generators are designated
among the validators based on past performance and availability. In each round, the stable leader has the
authority to promote or dismiss an input generator, but if it dismissed generators too frequently, the leader
itself will get demoted eventually.

The last approach randomizes leaders using some source of randomness that cannot be predicted in
advance.

TCB. As already mentioned in the Implementation section (Section 5), the Safety module of LibraBFT
captures the rules that must be obeyed by a validator to guarantee agreement on committed proposals. First,
the module succinct enough to allow formal verification of code implementations. Second, the interaction of
the module with the environment is small: At bootstrap, the information that the validator persisted must
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be uploaded with freshness proof to the safety module. Thereafter, the module can process proposed blocks
autonomously and without any interaction with the environment. This allows to run the entire module
within a secure, trusted compute base (TCB), provided that it is backed by a small, freshness-preserving
persistent store.

Flexible BFT enhancements. The Flexible BFT [23] approach allows to support different commit as-
surance levels within the same protocol. There are several ways in which this approach may be harnessed to
enhance the functionality of LibraBFT in the future. First, it can gradually increase assurance guarantees
for past transactions, thus longer since a transaction has settled, the safer it becomes. This notion is similar
to the gradually increasing finality of transactions in Bitcoin and Ethereum. Second, it allows to consider
certain blocks as more critical, e.g., periodic checkpoints, high-stake transactions, and reconfiguration com-
mands. Third, it supports adapting the commit parameters over time as evidence of corrupt/honest behavior
accrues, and likewise, as experience is gathered on network transmission delays.
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