
DiemBFT v4: State Machine Replication in the Diem Blockchain

The Diem Team ∗

Abstract

This report describes the 4th version of the algorithmic core of Diem consensus, named DiemBFT,
which is responsible for forming agreement on ordering and finalizing transactions among a configurable
set of validators. The main goal of this report is to improve the latency of previous versions. We recognize
that in the presence of a failed leader the view synchronization protocol of previous versions requires a
quadratic number of messages. DiemBFT embrace this design choice and adopt a quadratic view-change
of failed leaders, which enables it to commit blocks in two steps instead of three in the steady state.
Additionally, DiemBFT incorporates a leader reputation mechanism that provides leader utilization
under crash faults while making sure that not all committed blocks are proposed by Byzantine leaders.
Leader utilization guarantees that crashed leaders are not elected, preventing unnecessary latency delays.
Finally, DiemBFT formalizes the “safety isolation” guarantees. It encapsulates the correct behavior by
participants in a “tcb”-able module of constant memory footprint, allowing it to run within a secure
hardware enclave that reduces the attack surface on participants.

1 Introduction

The advent of the internet and mobile broadband has connected billions of people globally, providing access to
knowledge, free communications, and a wide range of lower-cost, more convenient services. This connectivity
has also enabled more people to access the financial ecosystem. Yet, despite this progress, access to financial
services is still limited for those who need it most.

Blockchains and cryptocurrencies have shown that the latest advances in computer science, cryptography,
and economics have the potential to create innovation in financial infrastructure, but existing systems have
not yet reached mainstream adoption. As the next step toward this goal, we have designed the Diem
Blockchain with the mission to enable a simple global currency and financial infrastructure that empowers
billions of people.

At the heart of this new blockchain is a consensus protocol called DiemBFT— the focus of this report
— by which blockchain transactions are ordered and finalized. To facilitate agreement among all validator
nodes on the ledger of transactions, the Diem Blockchain adopted the BFT approach by using the DiemBFT
consensus protocol.

DiemBFT encompasses several important design considerations.

Permissioned & Open Network. The security of DiemBFT depends on the quality of validator node
operators. Unlike prior work [14] that elects validator committees using Proof-of-Work, validator nodes in
DiemBFT will be run by members of the Association or third-party operators approved by Diem Networks
US to operate a validator node on their behalf. This model is referred to as permissioned, an approach that
promotes security of the network based on the quality of participating Association Members and allows for
sustainability without wasting excessive computational power.

∗The authors work at Novi, a subsidiary of Facebook, Inc., and contribute this paper to the Diem Association under a
Creative Commons Attribution 4.0 International License.

Revised August 18, 2021

1

https://creativecommons.org/licenses/by/4.0/

Classical BFT. DiemBFT builds on a classical BFT approach pioneered by Lamport, Pease and Schostack
in [15]. Four decades of scientific advances in this arena enable high transaction throughput, low latency,
and a more energy-efficient approach to consensus than “proof of work” used in some other blockchains.

The main guarantee provided in this approach is resilience against Byzantine failures – preventing in-
dividual faults from contaminating the entire system. DiemBFT is designed to mask any deviation from
correct behavior in a third of the participants. These cover anything from a benign bit flipping in a node’s
storage to fully compromising a server by stealing its secret keys. Additionally, DiemBFT maintains safety
even during periods of unbounded communication delays or network disruptions. This reflects our belief
that consensus protocols whose safety rely on synchrony would be inherently both complex and vulnerable
to Denial-of-Service (DoS) attacks on the network.

A second important guarantee this approach provides for DiemBFT is a clearly described transaction
finality — when a participant sees confirmation of a transaction from a quorum of validators, they can be
sure that the transaction has completed.

Enhancements. DiemBFT allows simple and robust implementation, paralleling that of public blockchains
based on Nakamoto consensus [16]. Notably, the protocol is organized around a single communication phase
and allows a concise safety argument and a robust implementation. DiemBFT thus bridges between the
simplicity and modularity of public blockchains based on Nakamoto consensus, but builds trust based on
the collective trustworthiness of the Association.

DiemBFT changes leaders in two separate cases. First, in normal operation DiemBFT rotates the leader-
role among validators in order to provide fairness and symmetry. This does not require any extra commu-
nication. However, if done naively (e.g., round-robin), this may incur a big latency overhead since crashed
leaders would keep being elected. In DiemBFT we design a novel leader election mechanism that achieves
leader utilization. That is, the number of times a crashed leader is elected as leader is bounded. The leader
election mechanism exploits the last committed state to implement a reputation scheme that tracks active
validators. The tricky part is to agree on the last committed state. If done naively, a Byzantine adversary
can make honest parties disagree on the leaders, which in turn may cause liveness or chain quality1 violations.

Second, DiemBFT changes leaders when they are considered faulty. The previous version used the Hot-
Stuff linear view change mechanism to replace faulty leaders. However, since the view synchronization in
previous versions requires quadratic communication anyway, DiemBFT uses a quadratic view-change mech-
anism that allows DiemBFT to reduce the HotStuff latency in the common case. In HotStuff terminology,
DiemBFT has a 2-chain commit rule. This makes DiemBFT a hybrid between Hotstuff (common-case ex-
ecution) and PBFT [6] (faulty leader execution). As a result during a stable network it has the linear cost
of HotStuff, but during instability it pays a quadratic cost per round to a worse-case cubic cost similar
to PBFT. As for the view synchronization, DiemBFT builds on top of the time-out certificates that was
introduced in previous versions and adds a Bracha broadcast[1] inspired boosting mechanism for timeout
messages to guarantee that all honest validators advance rounds in roughly the same speed 2

Finally, validators in DiemBFT can verify safety in an isolated secure safety module by only storing
locally a small (constant) amount of information. This enables the modeling of three types of validators:
honest, compromised, and Byzantine, such that an adversary controls a compromised validator but cannot
access its safety module. DiemBFT guarantees safety for any number of compromised validators as long as
the faction of Byzantine ones is less than 1/3.

2 Problem Definition

The goal of DiemBFT is to maintain a database of programmable resources with fault tolerance. At the core,
the system is designed around an SMR engine where validators form agreement on a sequence of transactions
and apply them in sequence order deterministically to the replicated database.

1Percentage of blocks proposed by non-Byzantine leaders.
2Part of the 2-chain work appears in [11].

2

DiemBFT is designed for a classical settings in which an initial system consists of a networked system of
n validators. The initial set of members is determined when the system is bootstrapped. To model failures,
we define an adversary that controls the network delays and the behavior of some of the validators. We
assume a secure trusted host and define three types of validators:

• Byzantine validator - all code is controlled by the adversary.

• Compromised validator - all code outside the secure trusted host is controlled by the adversary.

• Honest validator - nothing is controlled by the adversary

We collectively refer to honest and compromised validators as non-Byzantine validators and assume that
all validators might be compromised, but there are at most f < n/3 Byzantine validators. The Agreement
property requires that honest validators never commit contradicting chain prefixes. Note that compromised
validators might locally commit anything since the committed information is stored outside the trusted
hardware module. However, compromised validators cannot cause honest ones to violate agreement.

2.1 System Model

Network. The network model which is assumed for DiemBFT is a hybrid between synchronous and asyn-
chronous models called partial synchrony. It models practical settings in which the network goes through
transient periods of asynchrony (e.g., under attack) and maintains synchrony the rest of the times.

A solution approach for partially synchronous settings introduced by Dwork et al. [9] separates safety
(at all times) from liveness (during periods of synchrony). DLS introduced a round-by-round paradigm
where each round is driven by a designated leader. Progress is guaranteed during periods of synchrony
as soon as an honest leader emerges, and until then, rounds are retired by timeouts. The DLS approach
underlies most practical BFT works to date as well as the most successful reliability solutions in the industry,
for example, the Google Chubbie lock service [3], Yahoo’s ZooKeeper [13], etcd [10], Google’s Spanner [8],
Apache Cassandra [5] and others.

Formally, the partial synchrony model assumes a ∆ transmission bound similar to synchronous networks,
and a special event called GST (Global Stabilization Time) such that:

• GST eventually happens after some unknown finite time.

• Every message sent at time t must be delivered by time max{t, GST}+ ∆.

We encapsulate several tasks related to wire-protocol and defer it to a transport substrate that will be
described elsewhere. The transport takes care of formatting messages and serializing them for transmission
over the wire, for reliably delivering messages, and for retrieving any data referenced by delivered messages,
in particular, block ancestors. In particular, when a message is handled in the pseudo code, we assume that
its format and signature has been validated, and that the receivers has synced up with all ancestors and any
other data referenced by meta-information in the message.

2.2 Technical Background

DiemBFT is based on a line of replication protocols in the partial synchrony model with Byzantine Fault
Tolerance (BFT), e.g., [9, 6, 12, 2, 4, 14, 17, 7]. It embraces cutting-edge techniques from these works to
support at scale a replicated database of programmable resources.

Round-by-round BFT solutions. The classical solutions for practical BFT replication share a common,
fundamental approach. They operate in a round by round manner. In each round, there is a fixed mapping
that designates a leader for the round (e.g., by taking the round modulo n, the number of participants).
The leader role is to populate the network with a unique proposal for the round.

3

The leader is successful if it populates the network with its proposal before honest validators give up on
the round and time out. In this case, honest validators participate in the protocol phases for the round.
Many classical practical BFT solutions operate in two phases per round and incur quadratic communication
cost per decision (e.g., PBFT [6]). In the first phase, a quorum of validators certifies a unique proposal,
forming a quorum certificate, or a QC. In the second phase, a quorum of votes on a certified proposal drives
a commit decision. The leaders of future rounds always wait for a quorum of validators to report about the
highest QC they voted for. If a quorum of validators report that they did not vote for any QC in a round
r, then this proves that no proposal was committed at round r.

HotStuff, on the other hand, is a three-phase BFT replication protocol that has linear communication
overhead in the common-case. In HotStuff, the first and second phases of a round are similar to PBFT, but
the result of the second phase is a certified certificate, or a QC-of-QC, rather then a commit decision. A
commit decision is reached upon getting a quorum of votes on the QC-of-QC (a QC-of-QC-of-QC).

DiemBFT is inspired by the linear three-phase HotStuff, but gets rid of the three-step latency cost.
Instead, it preserves the communication linearity of HotStuff when the leader is alive but allows for a
quadratic cost during the view-change protocol to regain the ability to commit in two steps.

Chaining. DiemBFT borrows a chaining paradigm that has become popular in blockchain BFT protocols.
In the chaining approach, the phases for commitment are spread across rounds. More specifically, every
phase is carried in a round and contains a new proposal. The leader of round k drives only a single phase
of certification of its proposal. In the next round, k+ 1, a leader again drives a single phase of certification.
This phase has multiple purposes. The k+1 leader sends its own k+1 proposal. However, it also piggybacks
the QC for the k proposal. In this way, certifying at round k+ 1 generates a QC for k+ 1, and a QC-of-QC
for k. As a result, in a 2-phase protocol, the k proposal can become committed, when the (k + 1) proposal
obtains a QC.

Figure 1: DiemBFT pipelines proposals and QC generation across rounds.

4

Round synchronization. In a distributed system, at any moment in time, validators may be in a different
state and receive different messages. PBFT gave a theoretical “eventuality” method for round synchroniza-
tion by doubling the duration of rounds until progress is observed. HotStuff encapsulated the role of ad-
vancing rounds in a functionality named PaceMaker, but left its implementation unspecified. In DiemBFT,
when a validator gives up on a certain round (say r), it broadcasts a timeout message carrying a certificate
for entering the round. This brings all honest validators to r within the transmission delay bound ∆. When
timeout messages are collected from a quorum, they form a timeout certificate (TC). The TC also includes
the signatures of the 2f + 1 nodes on the highest round QC they are aware of. This later serves as proof
for the leader to safely extend the chain even if some parties are locked on a higher round than the one the
newly elect leader. To make sure that, after GST, all validators are able to form TCs in a O(∆) time for
each other we use a Bracha [1] style mechanism to forward the timeout messages.

3 DiemBFT Protocol

The goal of the DiemBFT protocol is to commit blocks in sequence. The protocol operates in a pipeline of
rounds. In each round, a leader proposes a new block. Validators send their votes to the leader of the
next round. When a quorum of votes is collected, the leader of the next round forms a quorum certificate
(QC) and embeds it in the next proposal. Validators may also give up on a round by timeout. This may
cause transition to the next round without obtaining a QC, in which case validators enter the next round
through a view-change mechanism by forming or observing a timeout certificate (TC) of the current round.
In fact, entering round r+ 1 requires observing either a QC or TC of round r. The leader of the next round
faces a choice as to how to extend the current block-tree it knows. In DiemBFT the leader always extends
the highest certified leaf with a direct child. The advantage is that the tree of blocks has a uniform structure
and every node has a QC for its direct parent. As a consequence of the DiemBFT chaining approach, the
block tree in DiemBFT may contain chains that have gaps in round numbers.

Round numbers are explicitly included in blocks, and the resulting commit logic is simple: It requires a 2-
chain with contiguous round numbers whose last descendent has been certified. When two uninterrupted
rounds complete, the head of the “2-chain”, consisting of the two consecutive rounds that have formed a
QC, becomes committed. See illustration in Figure 1.

The entire branch ending with the newly committed block becomes committed. Figure 2 displays a tree
of blocks, including an uncommitted fork. Forking can happen for various reasons such as a malicious leader,
message losses, and others. For example, the figure shows a Byzantine leader that forked the chain at block
k, causing an uncommitted chain to be abandoned. The k block uses the same QC for its parent as the left
fork. In the depicted scenario, the k block becomes committed while the left branch is discarded. Note that,
as we shortly explain, our safety rules guarantees that committed branches can never be discarded.

DiemBFT guarantees that only one fork becomes committed through a simple voting rule that consists
of two ingredients: First, validators vote in strictly increasing rounds. Second, each block has to include a
QC or a TC from the previous round. If the previous round results in a TC then the validators check that
the new leader’s proposal is safe to extend. This check consists of looking at the TC which bears the 2f + 1
highest qc round (the highest QC included in a block the validator voted for) from distinct nodes. If the
new proposal extends the highest of these highest qc round, this serves as proof that nothing from a round
higher can even be committed (Otherwise at least one would have reported a higher highest qc round).
Consider the scenario depicted in Figure 3, in which the k + 4 QC is formed committing the block from
round k + 3. In future rounds it will be impossible to form a TC that would allow extending a lower QC
than k + 3.

We proceed with a detailed description of the DiemBFT protocol, elaborating the data-structures and
modules in the implementation. The implementation is broken into the following modules:

• First, a Main (Section 3.1) module that is the glue, dispatching messages and timer event handlers.

• A Ledger (Section 3.2) module that stores a local, forkable speculative ledger state. It provides the
interface for SMR service and to be connected to higher level logic (the execution).

5

Figure 2: Proposals (blocks) pending in the Block-tree before and after a commit

• A Block-tree(Section 3.3) module that generates proposal blocks. It keeps track of a tree of blocks
pending commitment with votes and QC’s on them.

• A Safety (Section 3.4) module that implements the core consensus safety rules. The Safety : Private
part controls the private key and handles the generation and verification of signatures. It maintains
minimal state and can be protected by a secure hardware component.

• A Pacemaker (Section 3.5) module that maintains the liveness and advances rounds. It provides a
“hearbeat” to Safety.

• A MemPool (Section 3.6) module that provides transactions to the leader when generating proposals.

• Finally, a LeaderElection (Section 3.7) module that maps rounds to leaders and achieves optimal leader
utilization under static crash faults while maintaining chain quality under Byzantine faults.

Formal correctness proofs are given in Section 4.

6

Figure 3: Committed blocks form a monotonically increasing chain.

3.1 Main Module

Main : EventLoop
loop: wait for next event M ; Main.start event processing(M)

Procedure start event processing(M)
if M is a local timeout then Pacemaker.local timeout round()
if M is a proposal message then process proposal msg(M)
if M is a vote message then process vote msg(M)
if M is a timeout message then process timeout message(M)

The Main module of DiemBFT is an event-handling loop that invokes appropriate handlers to process
messages and events. The following events are handled: a propose message, a vote message, a remote timeout
message, and a local timeout.

7

Main

Procedure process certificate qc(qc)
Block-Tree.process qc(qc)
LeaderElection.update leaders(qc)
Pacemaker.advance round(qc.vote info.round)

Procedure process proposal msg(P)
process certificate qc(P.block.qc)
process certificate qc(P.high commit qc)
Pacemaker.advance round tc(P.last round tc)
round← Pacemaker.current round

leader← LeaderElection.get leader(current round)
if P.block.round 6= round ∨ P.sender 6= leader ∨ P.block.author 6= leader then

return
Block-Tree.execute and insert(P) // Adds a new speculative state to the Ledger

vote msg← Safety.make vote(P.block, P.last round tc)
if vote msg 6= ⊥ then

send vote msg to LeaderElection.get leader(current round + 1)

Procedure process timeout msg(M)
process certificate qc(M.tmo info.high qc)
process certificate qc(M.high commit qc)
Pacemaker.advance round tc(M.last round tc)
tc← Pacemaker.process remote timeout(M)
if tc 6= ⊥ then

Pacemaker.advance round(tc)
process new round event(tc)

Procedure process vote msg(M)
qc← Block-Tree.process vote(M)
if qc 6= ⊥ then

process certificate qc(qc)
process new round event(⊥)

Procedure process new round event(last tc)
if u = LeaderElection.get leader(Pacemaker.current round) then

// Leader code: generate proposal.

b← Block-Tree.generate block(MemPool.get transactions(),
Pacemaker.current round)

broadcast ProposalMsg〈b, last tc,Block-Tree.high commit qc〉

3.2 Ledger Module

Ultimately, the goal of the Diem blockchain is to maintain a database of programmable resources, which
the consensus DiemBFT core replicates. The database is represented by an abstract ledger state. Most of
the implementation details of the persistent ledger-store and of the execution VM that applies transactions
that mutate ledger state are intentionally left opaque and generic from the point of view of DiemBFT; in
particular, the specifics of Move transaction execution are beyond the scope of this manuscript.

The Ledger module, local to each DiemBFT validator, serves as a gateway to the auxiliary ledger-store.

8

It maintains a local pending (potentially branching) speculative ledger state that extends the last committed
state. The speculation tree is kept local at the validator in-memory until one branch becomes committed.
It provides a mapping from the blocks that are pending commitment to the speculative ledger state.

The Ledger.speculate(prev block id, block id, txns) API speculatively executes a block of transac-
tions over the previous block state and returns a new ledger state id. Speculative execution potentially
branches the ledger state into multiple (conflicting) forks that form a tree of speculative states. Eventually,
one branch becomes committed by the consensus engine. The Ledger.commit() API exports to the persistent
ledger store a committed branch. Locally, it discards speculated branches that fork from ancestors of the
committed state.

It is important to emphasize that Ledger supports speculative execution in order to enable proper handling
of potential non-determinism in execution. If we would build a system that is merely ordering the transactions
in order to pass them to the execution layer, we would not need to maintain a tree of speculative states
because the VM would execute committed transactions only. However, such a system would not be able to
tolerate any non-determinism (e.g., due to a hardware bug): the validators would diverge without DiemBFT
being aware of that. Hence, DiemBFT goes beyond ordering the transactions: it makes sure that the votes
certify both the transactions and their execution results. There should be at least 2f + 1 honest validators
that arrive at the same state in order to form a QC for a block of transactions.

Ledger
speculate(prev block id, block id, txns) // apply txns speculatively

pending state(block id) // find the pending state for the given block id or ⊥ if not present

commit(block id) // commit the pending prefix of the given block id and prune other branches

committed block(block id) // returns a committed block given its id

DiemBFT only requires the above basic API from the Ledger module.

3.3 Block-tree Module

The Block-tree module consists of two core data-types which the validator protocols is built around, blocks
and votes. Another data-type derived from votes is a Quorum Certificate (QC), which consists of a set of
votes on a block. An additional data-type concerned solely with timeouts and advancement of rounds is
described below in the Pacemaker module. The Block-tree module keeps track of a tree of all blocks pending
commitment and the votes they receive.

Figure 4: A block in Block-tree

Blocks. The core data structure used by the consensus protocol for forming agreement on ledger transac-
tions is a Block. Each block contains as payload a set of proposed Ledger transactions, as well as additional
information used for forming consensus decisions. Every block b (except for a known genesis block P0) is
chained to a parent via b.qc, a Quorum Certificate (QC) that consists of a quorum of votes for the parent
block. In this way, the blocks pending commitment form a tree of proposed blocks rooted at P0.

Vote information VoteInfo for a block b must include both the block id and the speculated execution
state exec state id in order to guarantee a deterministic execution outcome. Additionally, VoteInfo holds
the id’s and rounds of b’s parent. This information is kept for convenience, allowing to infer commitment

9

Block-tree
VoteInfo

id, round; // Id and round of block

parent id, parent round; // Id and round of parent

exec state id; // Speculated execution state

// speculated new committed state to vote directly on

LedgerCommitInfo
commit state id; // ⊥ if no commit happens when this vote is aggregated to QC

vote info hash; // Hash of VoteMsg.vote info

VoteMsg
vote info; // A VoteInfo record

ledger commit info; // Speculated ledger info

high commit qc; // QC to synchronize on committed blocks

sender← u; // Added automatically when constructed

signature← signu(ledger commit info); // Signed automatically when constructed

// QC is a VoteMsg with multiple signatures

QC

vote info;
ledger commit info;
signatures; // A quorum of signatures

author← u; // The validator that produced the qc

author signature← signu(signatures);

Block
author; // The author of the block, may not be the same as qc.author after view-change

round; // Yhe round that generated this proposal

payload ; // Proposed transaction(s)

qc ; // QC for parent block

id; // A unique digest of author, round, payload, qc.vote info.id and qc.signatures

10

from a single block without fetching its ancestors. In addition, a vote message includes LedgerCommitInfo,
a speculated committed ledger state, identified by commit state id. When a QC for a block results in a
commit of its parent, the quorum of votes on the block also serve to certify the new committed ledger state.

LedgerCommitInfo serves two purposes. First, it includes the commit state id, which can be given to
the clients as a proof of history (in practice commit state id can be a hash of a root of Merkle tree that
covers the history of the ledger). Clients need not be aware of the specifics of consensus protocol for as long as
they are able to verify that the given ledger state is signed by 2f+1 participants. Second, LedgerCommitInfo
includes the hash of VoteInfo. This hash is opaque to the clients and is used by Consensus participants.
A validator that signs its vote message is thus authenticating both the potential LedgerCommitInfo (to be
stored by the ledger as a proof of commit) and the QC embedded in the block it votes on (to be used for
running the Consensus protocol). Note that id of the block includes the digest of signatures, so the set of
voters for each committed round will be uniquely determined.

Block-Tree (cont.)
pending block tree; // tree of blocks pending commitment

pending votes; // collected votes per block indexed by their LedgerInfo hash

high qc; // highest known QC

high commit qc; // highest QC that serves as a commit certificate

Procedure process qc(qc)
if qc.ledger commit info.commit state id 6= ⊥ then

Ledger.commit(qc.vote info.parent id)
pending block tree.prune(qc.vote info.parent id) // parent id becomes the new root of

pending

high commit qc← maxround{qc, high commit qc}
high qc← maxround{qc, high qc}

Procedure execute and insert(b)
Ledger.speculate(b.qc.block id, b.id, b.payload)
pending block tree.add(b)

Function process vote(v)
process qc(v.high commit qc)
vote idx← hash(v.ledger commit info)
pending votes[vote idx]← pending votes[vote idx] ∪ v.signature
if |pending votes[vote idx]| = 2f + 1 then

qc←QC 〈
vote info← v.vote info,
state id← v.state id,
votes← pending votes[vote idx] 〉

return qc

return ⊥
Function generate block(txns, current round)

return Block 〈
author← u,
round← current round,
payload← txns,
qc← high qc,
id← hash(author || round || payload || qc.vote info.id || qc.signatures) 〉

Consider, for example, a proposal b in round k with parent b′ in round k− 1. In case a validator decides
to vote for b, it signs a LedgerCommitInfo that includes the potential commit of b′ as well as the hash

11

of VoteInfo on b.
The Block-Tree module tracks votes that have not formed a QC in pending votes. The pending block tree

is a speculative tree of blocks similar to the Ledger building a speculative tree of states. In fact, there is a
1:1 mapping between a block in pending block tree and a block in Ledger. When a new block is added
to the pending block tree it is also added to the Ledger. Votes are aggregated in PendingVotes based on
the hash of the ledger commit info. Once there are 2f + 1 votes, they form a QC.

The algorithm maintains the highest known certified block in high qc, updating it when a new QC is
formed or received as part of the proposal. New proposals extend the highest certified block known locally
to the validator.

Remaining message and certificate types

There is another type of certificate - timeout certificate, used to advance a round when for some reason a QC
on normal votes did not form. In addition to VoteMsg, there are two other types of messages TimeoutMsg

and ProposalMsg.

TimeoutInfo
round;
high qc;
sender← u; // Added automatically when constructed

signature← signu(round, high qc.round); // Signed automatically when constructed

TC
round; // All timeout messages that form TC have the same round

tmo high qc rounds; // A vector of 2f + 1 high qc round numbers of timeout messages that form TC

tmo signatures; // A vector of 2f + 1 validator signatures on (round, respective high qc round)

TimeoutMsg
tmo info; // TimeoutInfo for some round with a high qc

last round tc; // TC for tmo info.round− 1 if tmo info.high qc.round 6= tmo info.round− 1, else ⊥
high commit qc; // QC to synchronize on committed blocks

ProposalMsg
block;
last round tc; // TC for block.round− 1 if block.qc.vote info.round 6= block.round− 1, else ⊥
high commit qc; // QC to synchronize on committed blocks

signature← signu(block.id);

A timeout or a proposal message for round r is well-formed if it contains the TC of round r − 1 as
last round tc whenever the tmo info.high qc contained in the timeout message or block.qc (the parent
QC) contained in the proposal message, respectively, aren’t from round r − 1 (otherwise, last round tc is
irrelevant and set to ⊥ by convention). Messages that aren’t well-formed are discarded by honest validators,
and honest validators always generate well-formed timeout and proposal messages.

3.4 Safety Module

In DiemBFT, a block becomes committed when it becomes the head of a contiguous 2-chain, i.e. the block
round immediately follows the round of its parent block. This is checked in the commit state id candidate

function.
To be able to deploy the Safety module on a trusted hardware, DiemBFT maintains only the following

two counters: (i) highest vote round keeps the last voted round, and (ii) highest qc round keeps the
round of the highest QC included in a block the validator voted for.

12

Upon receiving a proposal (a block) b, a validator votes for b only if b.round is higher than its last voting
round. Additionally, the validator evaluates the safe to vote predicate, which encapsulates the voting
safety logic.

The full Safety module’s logic is captured below. First we describe the private members and interfaces
that can only be accessed from within the safety module.

Safety : Private
private key; // Own private key

public keys; // Public keys of all validators

highest vote round; // initially 0

highest qc round;

Procedure increase highest vote round(round)
// commit not to vote in rounds lower than round

highest vote round← max{round, highest vote round}

Procedure update highest qc round(qc round)
highest qc round← max{qc round, highest qc round}

Function consecutive(block round, round)
return round + 1 = block round

Function safe to extend(block round, qc round, tc)
return consecutive(block round, tc.round) ∧ qc round ≥ max{tc.tmo high qc rounds}

Function safe to vote(block round, qc round, tc)
if block round ≤ max{highest vote round, qc round} then

// 1. must vote in monotonically increasing rounds

// 2. must extend a smaller round

return false
// Extending qc from previous round or safe to extend due to tc

return consecutive(block round, qc round) ∨ safe to extend(block round, qc round, tc)

Function safe to timeout(round, qc round, tc)
if qc round < highest qc round ∨ round ≤ max{highest vote round− 1, qc round} then

// respect highest qc round and don’t timeout in a past round

return false
// qc or tc must allow entering the round to timeout

return consecutive(round, qc round) ∨ consecutive(round, tc.round)

Function commit state id candidate(block round, qc)
// find the committed id in case a qc is formed in the vote round

if consecutive(block round, qc.vote info.round) then
return Ledger.pending state(qc.id)

else
return ⊥

The public interface of the safety module described next is used by other modules to construct the two
types of votes (VoteMsg and TimeoutMsg). Any valid vote is thus prepared and signed by the Safety module,
which has the private keys. We also assume that valid signatures call in the beginning of these functions
checks the well-formedness and signatures on all parameters provided to construct the votes (using the public
keys of other validators). Other parts of the system also check well-formedness and signatures (e.g. when
receiving any type of message for the first time), but to protect against compromised validators the Safety

13

needs to do its own layer of signature checking.

Safety : Public

Function make vote(b, last tc)
qc round← b.qc.vote info.round
if valid signatures(b, last tc) ∧ safe to vote(b.round, qc round, last tc) then

update highest qc round(qc round) // Protect qc round

increase highest vote round(b.round) // Don’t vote again in this (or lower) round

// VoteInfo carries the potential QC info with ids and rounds of the parent QC

vote info←VoteInfo〈
(id, round)← (b.id, b.round),
(parent id, parent round)← (b.qc.vote info.id, qc round)
exec state id← Ledger.pending state(b.id) 〉

ledger commit info←LedgerCommitInfo 〈
commit state id← commit state id candidate(b.round, b.qc),
vote info hash← hash(vote info) 〉

return VoteMsg〈vote info, ledger commit info,Block-Tree.high commit qc〉

return ⊥
Function make timeout(round, high qc, last tc)

qc round← high qc.vote info.round;
if valid signatures(high qc, last tc) ∧ safe to timeout(round, qc round, last tc) then

increase highest vote round(round) // Stop voting for round

return TimeoutInfo〈round, high qc〉

return ⊥

Note that the safety module does not require external dependencies and generates votes coupled with
the potential commit information purely based on the rounds carried by the proposal and its QC. This is
helpful for verifying safety, as well as allowing to separate the Safety module to execute within a TCB.

3.5 Pacemaker Module

The advancement of rounds is governed by a module called Pacemaker. The Pacemaker keeps track of votes
and of time. In a “happy path”, the Pacemaker module at each validator uses the QCs in leader proposals
to advance rounds. In a “recovery path”, the Pacemaker observes lack of progress in a round and advances
rounds based on timeout certificates.

Upon a local round timeout, the Pacemaker broadcasts a TimeoutMsg notification. This message contains
high qc and is signed by the Safety module, which verifies that the highest QC round is not higher than the
round of high qc. This is important for ensuring that later leaders will not be able to fork below the last
committed block. Additionally, the high qc information helps both the leader and the slow nodes to get
up-to-date. After sending the TimeoutMsg message, validators increase their highest vote round to make
sure they never vote in this round.

When a validator receives f + 1 timeout messages for round r, it timeouts round r if it has not done
so already. When 2f + 1 timeout messages are received a validator can form a TC and advance a round.

14

Therefore, if one has formed a TC, all other honest validators will do so within two network transition delays.

Pacemaker
current round; // Initially zero

last round tc; // Initially ⊥
pending timeouts ; // Timeouts per rounda

Function get round timer(r)
return round timer formula // For example, use 4×∆ or α+ βcommit gap(r) if ∆ is unknown.

Procedure start timer(new round)
stop timer(current round)
current round← new round

start local timer for round current round for duration get round timer(current round)

Procedure local timeout round()
save consensus state()
timeout info← Safety.make timeout(current round,Block-Tree.high qc, last round tc)
broadcast TimeoutMsg〈timeout info, last round tc,Block-Tree.high commit qc〉

Function process remote timeout(tmo)
tmo info← tmo.tmo info

if tmo info.round < current round then
return ⊥

if tmo info.sender 6∈ pending timeouts[tmo info.round].senders then
pending timeouts[tmo info.round]← pending timeouts[tmo info.round] ∪ {tmo info}

if |pending timeouts[tmo info.round].senders| == f + 1 then
stop timer(current round)
local timeout round() // Bracha timeout

if |pending timeouts[tmo info.round].senders| == 2f + 1 then
return TC 〈

round← tmo info.round,
tmo high qc rounds← {t.high qc.round | t ∈ pending timeouts[tmo info.round]},
signatures← {t.signature | t ∈ pending timeouts[tmo info.round]}〉)

return ⊥
Function advance round tc(tc)

if tc = ⊥ ∨ tc.round < current round then
return false

last round tc← tc

start timer(tc.round + 1)
return true

Function advance round qc(qc)
if qc.vote info.round < current round then

return false
last round tc← ⊥
start timer(qc.vote info.round + 1)
return true

aOnly need to store pending timeouts for one round - the current round, which will also be the highest since any timeout
message contains certificates that make the protocol enter the relevant round.

15

3.6 MemPool Abstract Module

We assume a MemPool module, which provides transactions to populate block payloads.

MemPool
Function get transactions()

3.7 LeaderElection Module

Classical consensus algorithms such as PBFT keep a stable leader until it is suspected to be faulty (crashed
or Byzantine). This, however, is not a suitable strategy in blockchain protocols that need to ensure that
proposals by honest validators are being committed, i.e., chain-quality. One solution would be to rotate the
leader every round, giving every honest validator an equal chance to propose a value. However, this leads to
crashed validators keep being elected as leaders without evidence they recovered.

To address this issue we propose a reputation-based leader election mechanism, taking prior active par-
ticipation into account in determining eligibility to being elected a leader. However, if done naively such a
mechanism could allow the adversary to control the selection of leaders or make honest validators disagree
on leaders’ identities.

LeaderElection
validators; // The list of current validators

window size; // A parameter for the leader reputation algorithm

exclude size; // Between f and 2f, number of excluded authors of last committed blocks

reputation leaders; // Map from round numbers to leaders elected due to the reputation scheme

Function elect reputation leader(qc)
active validators← ∅ // validators that signed the last window size committed blocks

last authors← ∅ // ordered set of authors of last exclude size committed blocks

current qc← qc

for i = 0; i < window size ∨ |last authors| < exclude size; i← i + 1 do
current block← Ledger.committed block(current qc.vote info.parent id)
block author← current block.author
if i < window size then

active validators← active validators ∪ current qc.signatures.signers()
// |current qc.signatures.signers()| ≥ 2f + 1

if |last authors| < exclude size then
last authors← last authors ∪ {block author}

current qc← current block.qc

active validators← active validators \ last authors // contains at least 1 validator

return active validators.pick one(seed← qc.voteinfo.round)

Procedure update leaders(qc)
extended round← qc.vote info.parent round

qc round← qc.vote info.round
current round← PaceMaker.current round

if extended round + 1 = qc round ∧ qc round + 1 = current round then
reputation leaders[current round + 1]← elect reputation leader(qc)

Function get leader(round)
if 〈round, leader〉 ∈ reputation leaders then

return leader // Reputation-based leader

return validators[b round2 c mod |validators|] // Round-robin leader (two rounds per leader)

16

In DiemBFT validators have two paths to determine the leaders. If an honest validator gets at round
r a block with an embedded QC that commits round r − 2, then the commit information is used by the
leader reputation scheme to determine the leader of round r+ 1. In particular, the leader reputation scheme
uses the QC signers information to determine the set of active validators, then (for chain quality purposes)
excludes the exclude size latest leaders of committed blocks, and deterministically choose a leader from
the remaining set. Otherwise, if a validator does not commit round r − 2 at round r (due to Byzantine
behavior, crashes, or message delays), it uses a round-robin3 fallback to determine the leader of round r+ 1.
This means that different replicas may not follow the same path which would cause them to disagree on the
next leader. This, however, can only happen a small number of times after GST as we prove later.

The purpose of the leader election mechanism is to reduce the impact of crash faults on the consensus’s
latency by detecting and excluding crashed validators from the leader rotation. Formally, for executions
without Byzantine failures we require the following:

• t-Leader-utilization: Consider a run with no Byzantine validators. Then, after GST, there are at
most t rounds in which honest validators do not agree on the leader or their leader is crashed.

This above property optimizes the more likely scenario in which leaders fail by crashing. However, the
protocol must be resilient to worst case adversaries, including Byzantine validators. To this end, we require
the following properties to hold under worst case Byzantine conditions:

• Liveness: An infinite number of blocks are committed after GST.

• t-Chain-quality: In any window of t committed blocks, at least one is proposed by an honest leader.

We prove the above guarantees as well as responsiveness bounds in Section 4.2.

In practice, we may want slow validators to also get a chance to become leaders. This can be accomplished
by including validators not in active validators∪last authors in consideration of being elected as leader
with lower relative wight to their active counterparts. This introduces a trade-off with leader utilization.

4 Proof of Correctness

4.1 Agreement

We begin with some notation.

• We call a block Byzantine (honest) if it was proposed by a Byzantine (honest) validator.

• We say that a block B is certified if a quorum certificate QCB exists s.t. B.id = QCB .VoteInfo.id.

• Bi ←− QCi ←− Bi+1 means that the block Bi is certified by the quorum certificate QCi which is
contained in the block Bi+1. We also use B ←− QCB ←− B′ to express that QCB certifies block B and
is extended by block B′.

• Bi ←−∗ Bj means that the block Bj extends the block Bi. That is, there is exists a sequence
Bi ←− QCi ←− Bi+1 ←− QCi+1 · · · ←− QCj−1 ←− Bj

Definition 1 (Global direct-commit). We say that a block B is globally direct-committed if f + 1 non-
Byzantine validators each call Safety.make vote on block B′ in round B.round + 1, such that B′.QC certifies
B (i.e., B′.QC = QCB), setting Safety.highest qc round ← B.round. These calls return f + 1 matching
votes (that could be used to form a QCB′ with f other matching votes).

3Note that for chain-quality purposes, every validator is considered twice in the round-robin.

17

Definition 2 (Local direct-commit). An honest validator locally direct-commits block B on the ledger by
calling Ledger.commit(B.id), only if it observes QCB′ satisfying B ←− QCB ←− B′ ←− QCB′ and B′.round =
B.round + 1.

Indeed, Ledger.commit(B.id) is called from Block-Tree.process qc(QCB′). Moreover, we have that

Lemma 1. An honest validator locally direct-commits block B on the ledger only if block B is globally
direct-committed.

Proof. By Definition 2, there exists a chain B ←− QCB ←− B′ ←− QCB′ with B′.round = B.round+ 1. The
existence of QCB′ implies that f + 1 non-Byzantine validators voted for B′.

Our goal is to show that each committed block becomes part of the chain and can never be forked off.
However, it may take time for honest validators to include B in the committed chain in the local ledger (how
long it takes is analyzed in Section 4.2). This happens either after observing QCB′ satisfying Definition 2, or
by locally directly committing a block from a higher round - which as we prove below necessarily extends B.

Safety.highest vote round is updated every time a validator signs a timeout in Safety.make timeout or
signs a a vote in Safety.make vote. A successful Safety.make vote updates Safety.highest qc round. These
variables are themselves used to determine whether to sign a vote or a time-out message, and we have

Lemma 2. If a block B is globally direct-committed then any higher-round TC contains round at least
B.round within the tmo high qc rounds.

Proof. By Definition 1 f + 1 non-Byzantine validators call update high qc round method at the beginning
of Safety.make vote on block B′ at round B.round+ 1, setting Safety.highest qc round← B.round. None of
these non-Byzantine validators may have previously executed Safety.make timeout for round B.round + 1,
as this would stop voting in this round (by invoking increase last vote round(B.round + 1)) making it
impossible to prepare a vote on B′ due to the block round ≤ highest vote round check in the safe to vote

predicate. Finally, due to the checks in safe to timeout, a non-Byzantine validator can’t prepare a timeout
message for round > B.round until it enters round B.round + 1.

Since Safety.highest qc round is never decreased, a timeout message by any of the above f + 1 non-
Byzantine validators for a round > B.round must be prepared by a Safety.make timeout that observes
high qc.vote info.round ≥ highest qc round ≥ B.round. By quorum intersection, timeout messages used
to prepare the TC in any round > B.round contain a message from one of these non-Byzantine validators,
ensuring the corresponding round within tmo high qc rounds is at least B.round.

The next property follows from the quorum intersection, maximum number of Byzantine validators, the
definition of compromised validators, and the fact that private keys are only stored in the Safety module:

Property 1. If a block is certified in a round, no other block can gather f + 1 non-Byzantine votes in the
same round. Hence, at most one block is certified in each round.

Lemma 3. For every certified block B′ s.t. B′.round ≥ B.round such that B is globally direct-committed,
B ←−∗ B′.

Proof. Let r = B.round. By Property 1, B ←−∗ B′ for every B′ s.t. B′.round = r.
We now prove the lemma by induction on the round numbers r′ > r.

Base case: Let r′ = r + 1. B is globally direct-committed, so by Definition 1, there are f + 1 non-
Byzantine validators that prepare votes in round r′ = r + 1 (in Safety.make vote) on some block Br+1 such
that B ←− QCB ←− Br+1. By Property 1, only Br+1 can be certified in round r′.

Step: We assume the Lemma holds up to round r′ − 1 > r and prove that it also holds for r′. If no
block is certified at round r′, then the induction step holds vacuously. Otherwise, let B′ be a block certified
in round r′ and let QCB′ be its certificate. B is globally direct-committed, so by Definition 1, there are f + 1
non-Byzantine validators that have set Safety.highest qc round ← r in their successful Safety.make vote

18

call in round r + 1. One of these validators, v, must also have prepared a vote that is included in QCB′ (as
QC formation requires 2f + 1 votes and there are 3f + 1 total validators).

Let B′′ ←− QCB′′ ←− B′ and denote r′′ = B′′.round = QCB′′ .vote info.round. There are two cases to
consider, r′′ ≥ r and r′′ < r. In the first case, by the induction assumption for round r′′ < r′ (blocks must
extend smaller rounds to gather non-Byzantine votes and be certified), B ←−∗ B′′ and we are done.

In the second case, r′′ < r < r′ (the right inequality is by the induction step), i.e., the rounds for
B′′ and B′ are not consecutive. Hence, B′ must contain a TC for round r′ − 1. By Lemma 2, this TC
contains round ≥ r within tmo high qc rounds. Consider a successful call by an non-Byzantine validator
to Safety.make vote for B′. The only way to satisfy the safe to vote predicate and vote for B′ is by
satisfying the safe to extend predicate, which implies B′′.round ≥ max(tmo high qc rounds) ≥ r, which
is a contradiction to r′′ < r.

As a corollary of Lemma 3 and the fact that every globally direct-committed block is certified, we have

Property 2. For every two globally direct-committed blocks B,B′, either B ←−∗ B′ or B′ ←−∗ B.

For every locally committed block, there is a locally direct-committed block that extends it, and due
to Lemma 1, also a globally direct-committed block that extends it. Each globally committed block defines
a unique prefix to the genesis block, so Property 2 applies to all committed blocks.

4.2 Liveness

Lemma 4. When an honest validator in round less than r receives a proposal or a timeout message for
round r from another honest validator, it enters round r.

Proof. Recall that the proposal and timeout messages sent by honest validators are well-formed, i.e. contain
either a TC or QC of round r − 1. When an honest validator receives and processes a well-formed timeout
or proposal message, it calls PaceMaker.advance round tc on last round tc. If last round tc 6= ⊥, then
it is a TC from round r − 1, and the validator enters round r.

Otherwise, process certificate qc call on tmo info.high qc (for timeout message) or block.qc (for
proposal message), which internally calls PaceMaker.advance round qc, lets the validator enter round r.

Recall that the leader election logic is implemented in LeaderElection.update leaders. We refer to a
round whose designated round-robin leader is honest as an honest-round and note that there are infinitely
many honest-rounds. We refer to a leader whose proposal becomes certified at some round as the elected-
leader of the round.

Lemma 5. Suppose r is such that a QC forms in all rounds > r. Then, there are infinitely many rounds
> r with honest elected-leaders.

Proof. Let r′ > r be an honest-round with (honest) designated round-robin leader `. If all 2f + 1 honest
validators send their round r′ − 1 votes to `, then only ` can send round r proposal. The proposal must be
sent, as otherwise a QC can’t form for this round.

If some honest validator doesn’t send its round r′ − 1 vote to `, then a block Br−3 proposed in a round
r′ − 3 must be committed. Since there are infinitely many honest-rounds higher than r, infinitely many
blocks must be committed. As a corollary of chain quality (Section 4.4), eventually a honest block must be
committed, implying that an honest leader sent the proposal.

Lemma 6. If the round timeouts and message delays between honest validators are finite, then all honest
validators keep entering increasing rounds.

Proof. Suppose all honest validators are in round r or above, and let v be an honest validator in round r.
We first prove that some honest validator enters round r + 1. If all 2f + 1 honest validators time out in

round r, then v will eventually receive 2f+1 timeout messages, form a TC and enter round r+1. Otherwise,
at least one honest validator, v′ – not having sent a timeout message for round r – enters round r + 1.

19

If a TC forms in any round > r, then a timeout message from some honest validator will eventually be
delivered to v, triggering it to enter a higher round by Lemma 4. Similarly, if v′ times-out in any round > r,
then its timeout message will eventually trigger v to enter a higher round. Otherwise, v′ must observe a QC
in all rounds > r. In this case, by Lemma 5, an honest leader sends a proposal in some round > r. That
proposal will eventually be delivered to v, triggering it to enter a higher round by Lemma 4.

In an eventually synchronous setting, the system becomes synchronous after the the global stabilisation
time (GST). Liveness in the classical sense follows from the following

Property 3. Let r be a round after GST. Every honest validator eventually locally commits some block B
by calling Ledger.commit(B.id) for B.round > r.

Proof. By Lemma 6 honest nodes enter increasing rounds indefinitely.
We say that a round g is a generating-round if rounds g, g+ 1, g+ 2 are honest-rounds. We refer to them

as the rounds generated by g. We make use of two generating-rounds r′ > r + 3 and r′′ ≥ r′ + 3.
If no honest validator uses the reputation-based scheme to determine the leader of any round generated

by r′, then all honest validators agree on honest-leaders for 3 consecutive rounds. In this case, they all locally
direct-commit a block proposed in round r′ – proven in Property 4 (next section) – and we are done.

Otherwise, some honest validator v′ uses the reputation-scheme in one of the rounds generated by r′. In
order to so, v′ must have locally direct-committed a block B′ in some round ∈ [(r′ − 3), (r′ − 2), (r′ − 1)].
If a QC never forms in some round ≥ r′ + 3, then v′ times-out and sends a timeout message, and the
high commit qc in this message allows every receiver to locally commit block B′ (or higher).

Thus, assume QCs form in rounds ≥ r′′ (since r′′ ≥ r′ + 3). If honest round-robin leaders form the QCs
in honest-rounds generated by r′′, then by Property 4, all honest validators will locally commit the block
proposed in round r′′. Otherwise, since QCs were formed in this round, f + 1 honest validators must use
the reputation-based scheme to determine a leader in one of the rounds generated by r′′, implying that they
each must have locally committed a block proposed in round ≥ r′′ − 3 > r. By Lemma 5, an honest leader
` sends a proposal in some > r′′ + 3 round. The proposal must be based on a vote from at least one of the
f + 1 validators, and hence, contain the updated high commit qc that’s as large as in the vote. Therefore,
when the proposal is eventually delivered to all honest validators, it allows them to locally commit a block
proposed in some round > r.

4.3 Optimistic Time Bounds

We show that after GST, in an optimistic scenario when honest validators agree on the identity of leaders, the
protocol makes progress at the network speed. We assume a known upper bound ∆ on message transmission
delays among honest validators (practically, a back-off mechanism can be used to estimate ∆) and let
Pacemaker.set round timeout() return a fixed value 5∆ for all rounds. The results are given in terms
of the worst-case tramission delay ∆, but the real time complexity of the protocol depends on the actual
transmission delays (honest validators always just wait for sufficient messages to arrive to make progress).

Rounds are consecutive, advanced by quorum or timeout certificates, and honest validators wait for
proposals in each round. We first show that honest validators that receive a proposal without the round
timer expiring accept the proposal, allowing the quorum of honest validators to drive the system progress.

Lemma 7. Let r be a round such that no QC has yet been formed for it and in which no honest validator has
timed out. When an honest validator v invokes make vote based on a proposal of an honest leader (according
to v) of round r, it returns a vote message (not ⊥).

Proof. When the Safety module of an honest validator calls safe to vote, it checks that (1) round numbers
are monotonically increasing and (2a) either consecutive(block round, qc round) holds, i.e. the block
extends the QC of the previous round, or (2b) it’s safe to extend based on the TC of the previous round.

Suppose block round = r. For (1), by assumption none of the 2f + 1 honest validators have timed out,
so no TC could have been formed for round r. Also by assumption, no QC has been formed. Hence, no

20

honest validator may have entered or voted in a round larger than r. Round r has an honest leader, so when
a honest validator calls make vote for round r, it does so for the first time and with the largest voting round.

For (2), we consider two cases. If last round tc = ⊥, then by well-formedness of honest leader’s proposal,
the high qc it extends must have round number r − 1, rounds are consecutive, and condition (a) holds.

If last round tc is not empty, then it is a TC for round r−1, formed based on 2f +1 timeout messages.
In the safe to extend predicate, the right-hand side is the maximum round among the high qc’s in 2f + 1
timeout messages. The qc round on the left-hand side is the round of the QC that the leader extended.
Since the leader is honest, it is the high qc of the leader’s Block-Tree at the time when the proposal was
generated. In this case, condition (b) holds (the left hand side of the safe to extend is not less than the
right-hand side), because the honest leader updates the high qc in its Block-Tree to have round at least as
large as the high qc of each timeout message it receives.

We start by showing strong synchronization for certain types of rounds.

Lemma 8. Suppose all honest validators agree that honest validator v is the round r leader and r occurs
after GST. Then, all honest validators enter round r within a period of 2∆ from each other.

Proof. When the first honest validator enters round r, if it is not the leader, it must have formed a TC for
round r−1. Among the 2f +1 validators whose timeout votes formed the TC, at least f +1 must be honest.
These honest validators broadcast their timeout messages, and since it’s after GST, every honest validator
observes at least these f + 1 timeout messages for round r − 1 within time ∆. By Lemma 4, the first such
timeout message triggers all honest validators that were in rounds less than r−1 to enter round r−1. Then,
the Bracha timeout mechanism in PaceMaker.process remote timeout ensures that an honest validator in
round r− 1 immediately times out when it receives f + 1 round r− 1 timeouts. Thus, within 2∆ time, each
honest validator still in round r − 1 observes timeout messages for round r − 1 from all honest parties, is
able to form a TC of 2f + 1 timeout votes, and enters round r.

Either validator v is the first among honest validators to enter round r, or all honest validators (including
v) enter round r during a 2∆ time after the first honest validator. If v is the first to enter round r, then it
sends a proposal that arrives within time ∆ to all honest validators that view v as the leader, by Lemma 4
triggering any that haven’t yet entered round r to do so.

Lemma 9. If round r occurs after GST and all honest validators agree on honest leaders for rounds r and
r+1, then the honest block proposed in round r is globally direct-committed within 5∆ time of the first honest
validator entering round r.

Proof. By Lemma 8, all honest validators receive round r proposal with block Br from the leader within 3∆
time of starting their timer. By Lemma 7, honest validators accept the proposal and vote for it. Their votes
are delivered to `, the leader of round r + 1 (whose identity they all agree on) within time ∆. ` will form a
QC extending Br and send a proposal with a block Br+1. This proposal will be received by honest validators
within another ∆ time, by Lemma 4 triggering them to enter round r+1 before the local timer of 5∆ expires.
By Lemma 7, every honest validator accepts the proposal and prepares a vote (vote is sent to whoever the
validator believes to be the round r+2 leader). Since f+1 honest validators call Safety.make vote(Br+1,⊥),
by Definition 1 Br is globally direct-committed.

Finally, we show that all the committed blocks get locally committed by all honest validators. For this,
honest validators must keep observing commit certificates QCBr+1

extending QCBr
for blocks Br for ever

increasing rounds r. This happens within tight time bounds in a pipelined fashion:

Property 4. Suppose all honest validators agree on honest leaders of rounds r, r + 1, r + 2 and r occurs
after GST. Then, every honest validator locally direct-commits the honest block proposed in round r within
7∆ time of when the first honest validator entered round r.

Proof. We can continue the proof of Lemma 9, further knowing all honest validators agree that the leader
of round r + 2 is some honest validator v. v receives the votes to form the round r + 1 QC after at most

21

6∆ time of the first honest validator entering round r. It then prepares and sends round r+ 2 proposal that
includes and extends QCBr+1

. After at most another ∆ time (total 7∆), all honest validators receive this
proposal, leading them to locally direct-commit Br.

4.4 Chain Quality

Here we study chain quality, i.e. the fraction of committed blocks that were proposed by honest validators.
Note that chain quality is independent of protocol liveness. By liveness of the protocol, for any round r,
eventually every honest validator locally commits a block from round > r, which by Property 2 uniquely
determines the set of previously committed blocks. Therefore, in this section we don’t need to distinguish
between commit types (global, local, direct or not), as a block that is locally committed by any honest
validator or is globally committed, is eventually locally committed by all honest validators.

We say that a honest validator v considers a validator ` to be the leader of some round r when v’s call
of LeaderElection.get leader(r) returns `. We call a validator ` a reputation-based leader of round r, if it
could propose to f + 1 honest validators that would consider ` the reputation-based leader of round r.

Lemma 10. Let B be a committed block that was proposed by a Byzantine validator v in round r. If v is a
reputation-based leader of round r′ ≥ r + 3, then there are at least exclude size − t + 1 honest committed
blocks between r and r′.

Proof. Honest validators that consider v as a reputation-based leader of round r′ all have locally committed
block B′, proposed in round r′ − 3 ≥ r. By Property 2, B′ extends B. A validator in last authors can’t
become a reputation-based leader, so v wasn’t among the last exclude size different authors of committed
blocks going back from br′−3.

Hence, there are at least exclude size blocks by different non−v authors between B (exclusive) and
B′ (inclusive), thus between r and r′. There are at most t Byzantine validators including v, so at least
exclude size− (t− 1) of these blocks must be honest.

The next lemma easily follows from the design of the reputation mechanism.

Lemma 11. Let round r be after GST such that rounds r and r + 1 have the same honest leader according
to the round-robin schedule. A block proposed in one of the rounds r − 3, r − 2 or r must be committed.

Proof. If all honest validators used round-robin mechanism to determine the leader of rounds r and r + 1
then Lemma 9 would apply and a block proposed in round r would be committed. Otherwise, a block
proposed either in round r− 3 or round r− 2 must be committed (locally committed by an honest validator
that used the reputation-scheme).

Lemma 12. Suppose h honest blocks proposed in rounds [r, r+6f+1] are committed, where r is an even round
after GST. Then, there are ≥ 2f + 1− 3h committed Byzantine blocks proposed in rounds [r− 3, r+ 6f − 2].

Proof. Because r is even, the round-robin schedule over rounds [r, r + 6f + 1] consists of 3f + 1 pairs of
rounds (r, r + 1), . . . , (r + 6f, r + 6f + 1), each pair with the same, unique leader (in this schedule). 2f + 1
of these pairs have honest leaders according to the round-robin schedule. For each committed honest block
that was proposed in round r′, let us disqualify pairs that start with 2br′/2c, 2br′/2c + 2 and 2br′/2c + 4,
i.e. the pair containing r′ and the following two pairs. Note that at most 3h pairs get disqualified, and if
2f + 1 > 3h, we can still find d = 2f + 1 − 3h honest validators whose pairs of rounds aren’t disqualified.
We establish a unique corresponding committed Byzantine block, proposed in rounds [r− 3, r+ 6f − 2], for
each of these honest validators, completing the argument.

Let v be one of the d honest validators whose pair (r′, r′ + 1) isn’t disqualified - i.e. there are no honest
committed blocks proposed in rounds [r′ − 4, r′ + 1]. By Lemma 11, a block proposed in rounds r′ − 3 or
r′ − 2 has to be committed, and by the above, this block has to be Byzantine. It’s left to show that for two
different honest validators v1 and v2 with round-robin pairs (r1, r1 + 1) and (r2, r2 + 1), respectively, the sets
{r1 − 3, r1 − 2} and {r2 − 3, r2 − 2} are disjoint – hence the corresponding Byzantine commits are unique.

22

|r1 − r2| ≤ 1 holds if these sets intersect, which is impossible for distinct and even r1 and r2. As a result,
there are at least d Byzantine committed blocks proposed in rounds [r − 3, r + 6f − 2].

Theorem 13. Let r be a round after GST. At least one honest block proposed among the next O(f log 2f+1
2f+1−2t)

rounds gets committed. Moreover, at least exclude size − t + 1 honest blocks proposed among the next
O(f(log 2f+1

2f+1−2t + exclude size− t+ 1)) rounds get committed.

Proof. Without loss of generality, suppose r is even (at most one committed block per round). Starting from
r, we consider phases of 6f + 6 rounds and keep track of two variables: hi, and di, which roughly track the
number of honest (and Byzantine) committed blocks in a phase. Formally, we start by h0 = d0 = 0.

Let phase i start in round ri = r+ (6f + 6)i. By Lemma 12 for round ri + 4, if δh honest blocks proposed
in rounds [ri + 4, ri + 6f + 5] are committed, then there are at least (2f + 1 − 3δh) Byzantine committed
blocks proposed in rounds [ri + 1, ri + 6f + 2]. Note the buffer of 4 rounds between round ri + 6f + 2 and
round ri+1 = ri + 6f + 6 (start of the next phase).

Suppose δd among the Byzantine validators that proposed (2f + 1 − 3δh) committed Byzantine blocks
didn’t have any blocks committed in previous phases. We set hi+1 = hi + δh and di+1 = di + δd.

Claim 1. There are exclude size− t+ 1 honest commits within i phases, or 2di + 5δd ≥ 2f + 1− 3δh.

Proof. We can assume di Byzantine validators with blocks committed in previous phases don’t become
reputation-based leaders in rounds [ri + 1, ri + 6f + 2]. If they did, Lemma 10 would apply (due to
the buffer, previously committed blocks are proposed in rounds ≤ ri−1 + 6f + 2 = ri − 4) and imply
exclude size− t+ 1 honest commits. Hence, each of these validators propose at most twice.

We can also assume that in rounds [ri + 1, ri + 6f + 2], any Byzantine validator proposes as a
reputation-based leader at most 3 blocks that get committed. Otherwise, Lemma 10 again implies
exclude size− t+ 1 honest commits (any four rounds contain two with numbers at least 3 apart). Each
of the remaining δd Byzantine validators with committed blocks proposed in rounds [ri + 1, ri + 6f + 2]
may have at most 5 commits each, including ≤ 2 blocks proposed as a round-robin leader.

In the following, we keep applying Claim 1. Since exclude size − t + 1 honest commits immediately
completes the proof of the theorem, assume 2di + 5δd ≥ 2f + 1 − 3δh for the phases considered. Let’s call
phase i an H-phase if δh > 0 and a D-phase if δh = 0. Then, we have:

Claim 2. After each D-phase, the quantity 2f + 1− 2di decreases by at least a factor of 3/5.

Proof. In a D-phase, we have δh = 0. Therefore, by Claim 1, we have δd ≥ 2f+1−2di

5 . Then,

2f + 1− 2di+1

2f + 1− 2di
= 1− 2δd

2f + 1− 2di
≤ 1− 2/5 = 3/5.

By definition, di ≤ t, implying 2f+1−di ≥ 2f+1−2t. Therefore, D-phase can occur at most log5/3
2f+1

2f+1−2t =

O(log 2f+1
2f+1−2t) times, which is also the maximum number of phases before the first H-phase. So, at least

one honest block is committed in at most O(log 2f+1
2f+1−2t) phases, i.e. O(f log 2f+1

2f+1−2t) rounds.
For the second part of the theorem, note that the number of phases is the maximum number of D-phases

plus exclude size − t + 1. These contain at least exclude size − t + 1 H-phases, implying the desired
exclude size− t+ 1 honest commits.

Corollary 1. For t = f and exclude size = 2f , chain quality is O(f log f) commits per honest commit in
the worst case, and O(f) commits per honest commit on average.

23

4.5 Leader Utilization

Leader utilization property is concerned with the protocol efficiency against crash failures. Therefore, we
consider time after GST, and at most f validators that can crash, but aren’t byzantine. We say that a
validator crashes in round r if it has PaceMaker.current value = r at the time of the crash. Let tr be the
number of validators that crash in round r.

We call a validator live in a round r, if doesn’t crash in a round ≤ r. Let us define p = d 3·window size
2f+1 e.

Lemma 14. Suppose tr > 0 and round r occurs after GST. Define r′ = r + (p+ 1)(6f + 6)− 1 and let r′′

be the smallest round number such that r′′ > r and t(r′′) > 0, or ∞ if no such round exists. Then, rounds
r′, . . . r′′ − 1 all have live leaders that all non-crashed validators agree on.

Proof. We assume r′′ > r′, since otherwise there is nothing to prove.
As byzantine validators can be restricted to crash behavior, we can apply Lemma 12 p times: starting

from round 2br/2c+ 4, then from round 2br/2c+ 6f + 6, etc, and finally from round 2br/2c+ (p− 1)(6f +
6). We get that at least pd 2f+1

3 e ≥ window size blocks proposed in rounds r + 1, . . . (r′ − 6f − 6) are
committed. Validators that crashed in rounds ≤ r can’t certify these blocks, so they are always excluded
from active validators when determining the reputation-based leader for rounds (r′ − 6f − 2), . . . , r′′.

We show below that some round in (r′ − 6f − 3), . . . , r′ will have a reputation-based leader ` that knows
it’s the leader and that forms a QC on the votes from the previous round. There is no byzantine behavior, so
` knowing it’s the reputation-based leader means its QC must extend the QC of the previous round, which
must be a commit certificate for block proposed 3 rounds prior. Therefore, from this point until round r′′,
all validators will determine leaders by the reputation scheme. As we showed these reputation-based leaders
are live. Due to agreement (Property 2) and the fact that the reputation-based leaders are determined based
on committed blocks, validators never disagree on their identity.

At most f validators may crash, so by round-robin structure, we can find s with r′ − 6f − 3 ≤ s ≤ r′ − 6
such that the leaders of rounds s, s+ 1, . . . s+ 5 according to the round-robin schedule are all live. If in all
rounds s+ 1, s+ 2, s+ 3, a leader is allowed to collect votes on the proposal of the previous round and form
a QC, then we would be done, because the round s+ 3 leader would have to be reputation-based. But if a
QC never formed for (a proposal in) some round in s, s+ 1, s+ 2, then the next 3 rounds would necessarily
have live round-robin based leaders that all validators will agree on. There will be progress by Property 4,
triggering all the later leaders (until round r′′) to be reputation-based (and live).

If the system has t ≤ f actual crash failures, the leader utilization property follows by applying Lemma 14
to at most t rounds with crash failures.

Corollary 2. After GST, at most (p+ 1)t · (6f + 6) rounds fail due to crash failures (i.e. crashed leader or
validators disagreeing on the leader’s identity).

Further, we can treat the GST round like a round with a crash in the proof of Lemma 14 and obtain

Property 5. The leader election algorithm satisfies O(t · max(window size, f))-Leader-utilization: after
GST, for all but (p+ 1)(t+ 1)(6f + 6) rounds all validators agree on the leader that is live.

5 Acknowledgements

We wish to thank Manuel Bravo, Gregory Chockler, Alexey Gotsman, Rachid Guerraoui, Kartik Nayak,
Ling Ren and Maofan Yin for valuable feedback and discussions.

References

[1] Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987.

24

[2] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus. http: //

arxiv. org/ abs/ 1807. 04938v2 , 2018.

[3] Michael Burrows. The chubby lock service for loosely-coupled distributed systems. In 7th Symposium
on Operating Systems Design and Implementation (OSDI ’06), November 6-8, Seattle, WA, USA, pages
335–350, 2006.

[4] Vitalik Buterin and Virgil Griffith. Casper, the friendly finality gadget. https: // arxiv. org/ abs/

1710. 09437 , 2017.

[5] Apache Cassandra. Apache cassandra. Website, http: // planetcassandra. org/

what-is-apache-cassandra .

[6] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In 3rd symposium on Operating
Systems Design and Implementation (OSDI’99), volume 99, pages 173–186, 1999.

[7] TH Hubert Chan, Rafael Pass, and Elaine Shi. Pala: A simple partially synchronous blockchain.
https://eprint.iacr.org/2018/981, 2018.

[8] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson C. Hsieh, Sebastian
Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle,
Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth
Wang, and Dale Woodford. Spanner: Google’s globally distributed database. ACM Trans. Comput.
Syst., 31(3):8:1–8:22, 2013.

[9] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony.
Journal of the ACM (JACM), 35(2):288–323, 1988.

[10] etcd community. etcd. Website, https: // etcd. io/ .

[11] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and Zhuolun Xiang.
Jolteon and ditto: Network-adaptive efficient consensus with asynchronous fallback. arXiv preprint
arXiv:2106.10362, 2021.

[12] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael K Re-
iter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT: a scalable decentralized trust
infrastructure for blockchains. In DSN, 2019.

[13] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. Zookeeper: Wait-free
coordination for internet-scale systems. In 2010 USENIX Annual Technical Conference, Boston, MA,
USA, June 23-25, 2010, 2010.

[14] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and Bryan
Ford. Enhancing bitcoin security and performance with strong consistency via collective signing. In
25th {usenix} security symposium ({usenix} security 16), pages 279–296, 2016.

[15] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[16] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http: // bitcoin. org/ bitcoin.

pdf , 2008.

[17] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff: BFT
consensus with linearity and responsiveness. In 38th ACM symposium on Principles of Distributed
Computing (PODC’19), 2019.

25

http://arxiv.org/abs/1807.04938v2
http://arxiv.org/abs/1807.04938v2
https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1710.09437
http://planetcassandra.org/what-is-apache-cassandra
http://planetcassandra.org/what-is-apache-cassandra
https://eprint.iacr.org/2018/981
https://etcd.io/
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

	Introduction
	Problem Definition
	System Model
	Technical Background

	DiemBFT Protocol
	Main Module
	Ledger Module
	Block-tree Module
	Safety Module
	Pacemaker Module
	MemPool Abstract Module
	LeaderElection Module

	Proof of Correctness
	Agreement
	Liveness
	Optimistic Time Bounds
	Chain Quality
	Leader Utilization

	Acknowledgements

